Chaos Control for a 4D Hyperchaotic System

Article Preview

Abstract:

In this paper, a four-dimensional (4D) autonomous hyperchaotic system is dealt with. The stability criteria of equilibria of the controlled hyperchaotic chaotic system are established. Using the dislocated feedback control, enhancing feedback control, and nonlinear function feedback control methods, the chaos of the 4D hyperchaotic system can be suppressed to unstable equilibrium. Some numerical simulations revealing the effectiveness of our control strategies are given..

You might also be interested in these eBooks

Info:

Periodical:

Pages:

84-87

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Ott, C. Grebogi, J.A. Yorke, Controlling chaos, Physical Review Letters, 64 (11) (1990) 1196-1199.

DOI: 10.1103/physrevlett.64.1196

Google Scholar

[2] M.T. Yassen: Chaos control of Chen chaotic dynamical system, Chaos, Solitons and Fractals, 15 (2) (2003) 271-283.

DOI: 10.1016/s0960-0779(01)00251-x

Google Scholar

[3] G. Chen: Controlling Chaos and Bifurcations in Engineering Systems, CRC Press, Boca Raton, FL, (1999).

Google Scholar

[4] M. Wan: Convergence and chaos analysis of a blind decorrelation neural network, Journal of Information and Computational Science, 8 (5) (2011) 791-798.

Google Scholar

[5] Y.W. Deng, G.X. Sun, J.Q. E: Application of chaos optimization algorithm for robust controller design and simulation study, Journal of Information and Computational Science, 7 (13) (2010) 2897-2905.

Google Scholar

[6] K.J. Zhang, C.C. Chai: Stability analysis and hyperchaos control for a 4D hyperchaotic system, Journal of Information and Computational Science, 9 (11) (2012) 3055-3061.

Google Scholar

[7] X.S. Yang, G.R. Chen: Some observer-based criteria for discrete-time generalized chaos synchronization, Chaos, Solitons and Fractals, 13 (6) (2002) 1303-1308.

DOI: 10.1016/s0960-0779(01)00127-8

Google Scholar

[8] E.N. Sanchez, J.P. Martinez, G.R. Chen: Chaos stabilization: an inverse optimal control approach, Latin American Applied Research, 32 (1) (2002) 111-114.

Google Scholar

[9] E.W. Bai, K.E. Lonngren: Sequential synchronization of two Lorenz systems using active control, Chaos, Solitons and Fractals, 11 (7) (2000) 1041-1044.

DOI: 10.1016/s0960-0779(98)00328-2

Google Scholar

[10] G.R. Chen, X. Dong: On feedback control of chaotic continuous time systems, IEEE Transcations on Circuits and Systems, 40 (9) (1993) 591-601.

DOI: 10.1109/81.244908

Google Scholar

[11] H.N. Agiza: Controlling chaos for the dynamical system of coupled dynamos, Chaos, Solitons and Fractals, 13 (2) (2002) 341-352.

DOI: 10.1016/s0960-0779(00)00234-4

Google Scholar

[12] M.T. Yassen: Adaptive control and synchronization of a modified Chuas circuit system Applied Mathematics and Computation, 135 (1) (2001) 113-128.

DOI: 10.1016/s0096-3003(01)00318-6

Google Scholar

[13] T.L. Liao, S.H. Lin: Adaptive control and synchronization of Lorenz system, Journal of Franklin Institute, 336 (6) (1999) 925-937.

DOI: 10.1016/s0016-0032(99)00010-1

Google Scholar

[14] W.B. Liu, W.K.S. Tang, G.R. Chen: Forming and implementing a hyperchaotic system with rich dynamics, Chinese Physics B, 20 (9) (2011) 090510.

DOI: 10.1088/1674-1056/20/9/090510

Google Scholar

[15] C. Tao: Dislocated feedback synchronization of Lorenz chaotic system, Physics Letters A, 348 (3-6) (2006) 201-209.

DOI: 10.1016/j.physleta.2005.08.060

Google Scholar

[16] C. Zhu, Z. Chen: Feedback control strategies for the Liu chaotic system, Physics Letters A, 372 (22) (2008) 4033-4036.

DOI: 10.1016/j.physleta.2008.03.018

Google Scholar

[17] N. Jia, T. Wang: Chaos control and hybrid projective synchronization for a class of new chaotic systems, Computers and Mathematics with Applications, 62 (12) (2011) 4783-4795.

DOI: 10.1016/j.camwa.2011.10.069

Google Scholar