Photocatalytic Activity of Titania Nanowire Arrays by Sol-Template Method

Article Preview

Abstract:

The template method combined with sol-dipping deposition or sol-electrophoresis was used to prepare titania (TiO2) nanowires with shape of rod or string of beads. When irradiated under ultraviolet (UV) light for 1 hour, the degradation rate of methyl orange (MO) using nanowire arrays reached 98.5% which was 1.84 times as much as that of the thin film on glass plate, and when irradiated under visible light for 6 hours, the degradation rate reached 96.7% which was 4.17 times as much as that of the thin film.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

121-124

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Ge , M. X. Xu, H. B. Fang, J. Sol-Gel Sci. Techn. Vol. 40 (2006), p.65.

Google Scholar

[2] W. S. Lu, G. C. Xiao, D. Z. Li, Chin. J. Inorg. Chem. Vol. 21 (2005), p.1495.

Google Scholar

[3] H. Irie, Y. Watanabe, K. Hashimoto, J. Phys. Chem. B Vol. 107 (2003), p.5483.

Google Scholar

[4] O. Diwald, T. L. Thompson, T. Zubkov, J. Phys. Chem. B Vol. 108 (2004), p.6004.

Google Scholar

[5] W. Choi, A. Termin, M. R. Hoffmann, J. Phys. Chem. Vol. 98 (1994), p.13699.

Google Scholar

[6] J. G. Yu, X. J. Zhao, Q. N. Zhao, Thin Solid Films Vol. 379 (2000), p.7.

Google Scholar

[7] X. Z. Li, F. B. Li, C. L. Yang, J. Photochem. Photobiol. A: Chem. Vol. 141 (2001), p.209.

Google Scholar

[8] T. Ihara, M. Miyoshi, Appl. Catal. B: Env. Vol. 42 (2003) , p.403.

Google Scholar

[9] R. Nakamura, T. Tanaka, Y. Nakato, J. Phys. Chem. B Vol. 108 (2004), p.10617.

Google Scholar

[10] C. Bura, Y. Lou, X. Chen, Nano. Lett. Vol. 3 (2003), p.1049.

Google Scholar

[11] S. Khan, M. Al-Shahry, W. B. Ingler, Science Vol. 297 (2002), p.2243.

Google Scholar

[12] T. Ohno, M. Akiyoshi, T. Umebayashi, Appl. Catal. A: Gen. Vol. 265 (2004), p.115.

Google Scholar

[13] X. Chen, C. Burda, J. Phys. Chem. B Vol. 108 (2004), p.15446.

Google Scholar

[14] L. Ge, M. X. Xu, H. B. Fang, Mater. Lett. Vol. 61 (2007), p.63.

Google Scholar

[15] Y. Bessekhouad, N. Chaoui, M. Trzpit, J. Photochem. Photobiol. A Vol. 183 (2006), p.218.

Google Scholar

[16] J. C. Lee, T. G. Kim, H. J. Choi, Cryst. Growth Des. Vol. 7 (2007), p.2588.

Google Scholar

[17] D. Li, N. Ohashi, S. Hishita, J. Solid State Chem. Vol. 178 (2005), p.3293.

Google Scholar

[18] N. P. Hua, Z . Y. Wu, Y. K. Du, Acta Phys. Chim. Sin. Vol. 21 (2005), p.1081.

Google Scholar

[19] H. Y. Wei, Y. S. Wu, N. Lun, J. Mater. Sci. Vol. 39 (2004), p.2100.

Google Scholar

[20] G. Liu, J. Zhao, H. Hidka, J. Photochem. Photobiol. A: Chem. Vol. 133 (2000), p.83.

Google Scholar

[21] F. Zhang, J. Zhao, T. Shen, Appl. Catal. B: Environ. Vol. 15 (1998), p.147.

Google Scholar

[22] P. G. Hoertz, D. W. Thompson, L. A. Friedman, J. Am. Chem. Soc. Vol. 124 (2002), p.9690.

Google Scholar

[23] L. Q. Jing, X. J. Sun, B. F. Xin, J. Solid State Chem. Vol. 177 (2004), p.3375.

Google Scholar

[24] S. S. Sesha, J. Wade, K. S. Elias, J. Alloys. Compd. Vol. 424 (2006), p.322.

Google Scholar

[25] Y. M. Tian, M. X. Xu, X. Z. Liu, Chin. J. Cata. Vol. 27(8) (2006), p.703.

Google Scholar

[26] L. Ge, M. X. Xu, M. Sun, J. Sol-Gel Sci. Techn. Vol. 38 (2006), p.47.

Google Scholar