Optimal Sample Size Allocation for Multi-Level Stress Testing under Progressive Hybrid Interval Censoring

Article Preview

Abstract:

In this paper, we discuss the optimal allocation problem in a multi-level stress test with progressive hybrid interval censoring and Weibull regression model. We derive the maximum likelihood estimators and their asymptotic variance–covariance matrix through the Fisher information. Four optimality criteria are used to discuss the optimal allocation problem. Finally, an example is provided to illustrate the proposed design.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2423-2426

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Balakrishnan and Q. Xie, Exact inference for a simple step-stress model with Type-I hybrid censored data from the exponential distribution, Journal of Statist Planning and Inference, Vol. 137 (2007), p.3268–3290.

DOI: 10.1016/j.jspi.2007.03.011

Google Scholar

[2] Gouno, E, Sen, A, Balakrishnan, N, Optimal step-stress test under progressive type-I censoring, IEEE Trans. Reliability, Vol. 53(2004), p.388–393.

DOI: 10.1109/tr.2004.833320

Google Scholar

[3] C.Y. Kaa, P.S. Chana, H.K.T. Ngb and N. Balakrishnan, Optimal sample size allocation for multi -level stress testing with Weibull regression under Type-II censoring, Statistics, Vol. 45(2011) pp.257-279.

DOI: 10.1080/02331880903546290

Google Scholar

[4] Li Ling , Wei Xu and Minghai Li, Optimal bivariate step-stress accelerated life test for Type-I hybrid censored data, Journal of Statistical Computation and Simulation, Vol. 81(2011), p.1175 –1186.

DOI: 10.1080/00949651003796327

Google Scholar

[5] Erhard Cramer, N. Balakrishnan, On some exact distributional results based on Type-I progressively hybrid censored data from exponential distributions, Statistical Methodology, Vol. 10(2013), pp.128-150.

DOI: 10.1016/j.stamet.2012.07.006

Google Scholar

[6] N. Balakrishnan, Debasis Kundu, Hybrid censoring: Models, inferential results and applications. Computational Statistics and Data Analysis, Vol. 57(2013), p.166–209.

DOI: 10.1016/j.csda.2012.03.025

Google Scholar

[7] Elham Bayat Mokhtari, A. Habibi Rad, F. Yousefzadeh, Inference for Weibull distribution based on progressively Type-II hybrid censored data, Journal of Statistical Planning and Inference, Vol. 141 (2011), p.2824–2838.

DOI: 10.1016/j.jspi.2011.03.007

Google Scholar

[8] Ali A. Ismail, Estimating the parameters of Weibull distribution and the acceleration factor from hybrid partially accelerated life test, Applied Mathematical Modelling, Vol. 36(2011), pp.2916-2921.

DOI: 10.1016/j.apm.2011.09.083

Google Scholar