[1]
S. Piller, M. Perrin., and A. Jossen, Methods for State-of-Charge Determination and Their Applications, Journal of Power Sources, vol. 96, p.113–120, (2001).
DOI: 10.1016/s0378-7753(01)00560-2
Google Scholar
[2]
Lin C, Chen QS, Wang JP. Improved Ah counting method for state of charge estimation of electric vehicle batteies. J Tsinghua Univ 2006; 46(2): 247–51.
Google Scholar
[3]
Shen WX, Chan CC, Lo EWC, Chau KT. A new battery available capacity indicator for electric vehicles using neural network. Energy Conversion and Management 2002; 43: 817e26.
DOI: 10.1016/s0196-8904(01)00078-4
Google Scholar
[4]
Shen WX, Chau KT, Chan CC. Neural network-based residual capacity indicator for nickel-metal hydride batteries in electric vehicles. IEEE Transactions on Vehicular Technology 2005; 54: 1705e12.
DOI: 10.1109/tvt.2005.853448
Google Scholar
[5]
Cheng B, Bai ZF, Cao BG. State of charge estimation based on evolutionary neural network. Energy Conversion and Management 2008; 49: 2788e94.
Google Scholar
[6]
Chau KT, Wu KC, Chan CC. A new battery capacity indicator for lithium-ion battery powered electric vehicles using adaptive neuro-fuzzy inference system. Energy Conversion and Management 2004; 45: 1681e92.
DOI: 10.1016/j.enconman.2003.09.031
Google Scholar
[7]
Singh P, Vinjamu R, Wang XP, Reisne D. Design and implementation of a fuzzy logic-based state-of-charge meter for Li-ion batteries used in portable defibrillators. Journal of Power Sources 2006; 162: 829e36.
DOI: 10.1016/j.jpowsour.2005.04.039
Google Scholar
[8]
X. Hu, F. Sun, Fuzzy clustering based multi-model support vector regression state of charge estimator for lithium-ion battery of electric vehicle, Int. Conf. Intell. Human–Mach. Systems Cybern. (2009) 392–396.
DOI: 10.1109/ihmsc.2009.106
Google Scholar
[9]
Hansen T, Wang CJ. Support vector based battery state of charge estimator. Journal of Power Sources 2005; 141: 351e8.
DOI: 10.1016/j.jpowsour.2004.09.020
Google Scholar
[10]
Shi QS, Zhang CH, Cui NX. Estimation of battery state-of-charge using V-support vector regression algorithm. International Journal of Automotive Technology 2008; 9: 759e64.
DOI: 10.1007/s12239-008-0090-x
Google Scholar
[11]
Hu XS, Sun FC. Fuzzy clustering based multi-model support vector regression state of charge estimator for lithium-ion battery of electric vehicle. International Conference on Intelligent Human-Machine Systems and Cybernetics; 2009: 392e96.
DOI: 10.1109/ihmsc.2009.106
Google Scholar
[12]
O. Barbarisi, F. Vasca, L. Glielmo, State of charge Kalman filter estimator for automotive batteries, Control Eng. Pract. 14 (2006) 267–275.
DOI: 10.1016/j.conengprac.2005.03.027
Google Scholar
[13]
R.S. Khaleghi, S. Rayman, R.E. White, State of Charge and loss of active material estimation of a lithium ion cell under low earth orbit condition using Kalman filtering approaches, J. Electrochem. Soc. 159 (2012) A860–A872.
DOI: 10.1149/2.098206jes
Google Scholar
[14]
G.L. Plett, Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs, Part 3. State and parameter estimation, J. Power Sources 134 (2004) 277–292.
DOI: 10.1016/j.jpowsour.2004.02.033
Google Scholar
[15]
J. Lee, O.Y. Nam, B.H. Cho, Li-ion battery SOC estimation method based on the reduced order extended Kalman filtering, J. Power Sources 174 (2007) 9–15.
DOI: 10.1016/j.jpowsour.2007.03.072
Google Scholar
[16]
X. Kai, C.L. Wei, L.D. Liu, Robust Extended Kalman Filtering for Nonlinear Systems With Stochastic Uncertainties, IEEE Trans. Syst. Man Cybern. A Syst 40 (2010) 399–405.
DOI: 10.1109/tsmca.2009.2034836
Google Scholar
[17]
Dai haifeng, Sun zechang and Wei xuezhe, Estimation of Internal States of Power Lithium-ion Batteries Used on Electric Vehicles by Dual Extended Kalman Filter, Journal of Mechanical Engineering, vol. 45, pp.95-10 I, June (2009).
DOI: 10.3901/jme.2009.06.095
Google Scholar
[18]
G.L. Plett, Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1: Introduction and state estimation, J. Power Sources 161 (2006) 1356–1368.
DOI: 10.1016/j.jpowsour.2006.06.003
Google Scholar
[19]
G.L. Plett, Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2: Simultaneous state and parameter estimation, J. Power Sources 161 (2006) 1369–1384.
DOI: 10.1016/j.jpowsour.2006.06.004
Google Scholar
[20]
F. Sun, X. Hu, Y. Zou, S. Li, Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles, Energy 36 (2011) 3531–3540.
DOI: 10.1016/j.energy.2011.03.059
Google Scholar