[1]
W.H. Hoppman, Forced lateral vibration of beam carrying a concentrated mass, J. Appl. Mech. 19 (1952) 301-307.
DOI: 10.1115/1.4010502
Google Scholar
[2]
S.P. Timoshenko, Vibration problems in engineering, Mc. Graw-Hill, New York, (1954).
Google Scholar
[3]
A.A. Laura, J.L. Porubo, E.A. Susemihl, A note on the vibration of a clamped-free beam with a mass at the free end, J. Sound Vibr. 37 (1974) 161-168.
DOI: 10.1016/s0022-460x(74)80325-1
Google Scholar
[4]
E. Esmailzadeh, G. Nakhaie-Jazar, Periodic behavior of a cantilever beam with end mass subject to harmonic base excitation, Int. J. of Non-Linear Mechanics, 33 (4) (1998) 567-577.
DOI: 10.1016/s0020-7462(97)00038-3
Google Scholar
[5]
A.H. Nayfeh, D.T. Mook, Nonlinear oscillations, Willey, New York, (1979).
Google Scholar
[6]
N. Bogoliubov, J.A. Mitropolsky, Asymptotic methods in the theory of nonlinear oscillations, Hindustan Publishing, Delhi, (1962).
Google Scholar
[7]
R.E. Mickens, Iteration procedure for determining approximate solutions to nonlinear oscillator equations, J. Sound Vibr. 116 (1987) 185-188.
DOI: 10.1016/s0022-460x(87)81330-5
Google Scholar
[8]
G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal Appl. 135 (1988) 501-544.
Google Scholar
[9]
H. Hu, A modified method of equivalent linearization that works even when the nonlinearity is not small, J. Sound Vibr. 276 (2004) 1145-1149.
DOI: 10.1016/j.jsv.2003.11.006
Google Scholar
[10]
A.V. Rao, B.N. Rao, Some remarks on the harmonic balance method for mixed-parity nonlinear oscillations, J. Sound Vibr. 170 (1994) 571-576.
DOI: 10.1006/jsvi.1994.1087
Google Scholar
[11]
N. Herişanu, V. Marinca, T. Dordea, G. Madescu, A new analytical approach to nonlinear vibration of an electrical machine, Proc. Rom. Acad. 9 (2008) 229-236.
Google Scholar
[12]
V. Marinca, N. Herişanu, Nonlinear dynamical systems in engineering. Some approximate approaches, Springer, Berlin, (2011).
Google Scholar