Approximate Analytical Solutions to Nonlinear Vibrations of a Thin Elastic Plate

Article Preview

Abstract:

In this paper we consider the propagation equation of the longitudinal elastic wave in the presence of the volume forces, taking into account the shear phenomena of a thin elastic plate. In order to find an approximate analytical solutions of the governing system we apply Optimal Homotopy Asymptotic Method (OHAM). This technique combines the features of the homotopy concept with an efficient computational algorithm which provides a simple and rigorous procedure to control the convergence of the solution. An excellent agreement is found between the results obtained using OHAM and numerical integration results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

40-44

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Fu, Q. Y. Long, C. W. Lung, Relevance elastic exponent on the thickness of porous plate, J. of Phy. Condensed Matter, 4 (1), 1992, 49-52.

Google Scholar

[2] A. Pompei, M. A. Rigano, On the bending of micropolar plates, Int. J. of Eng. Sci., 44 (2006), 1324-1333.

Google Scholar

[3] K.R. Rajagopal, A.S. Wineman, New exact solutions in nonlinear elasticity, Int. J, Eng. Sci. 23(2) (1985), 217-234.

Google Scholar

[4] B. -F. Apostol, On a non-linear wave equation in elasticity, Physics Lett. A 318 (2003), 545-552.

DOI: 10.1016/j.physleta.2003.09.064

Google Scholar

[5] A.H. Bokhari, A.H. Kara, F.D. Zaman, Exact solutions of some general nonlinear wave equations in elasticity, Nonlinear Dyn. DOI 10. 2007/s11071-006-9050-8, 6 pages.

DOI: 10.1007/s11071-006-9050-z

Google Scholar

[6] M.T. Mustafa, K. Masood, Symmetry solutions of a nonlinear elastic wave equation with third-order anharmonic corrections, Appl. Math. Mech. – Engl. Ed. 30(8) (2009), 1017-1026.

DOI: 10.1007/s10483-009-0808-z

Google Scholar

[7] E. Alfinito, M.S. Causo, G. Profilo, G. Soliani, A class of nonlinear wave equations containing the continuous Toda case, J. Phys. A 31 (1998), 2173-2189.

DOI: 10.1088/0305-4470/31/9/008

Google Scholar

[8] V. Marinca, N. Herisanu, Nonlinear Dynamical Systems in Engineering. Some Approximate Approaches, Springer Verlag, Berlin, Heidelberg, (2011).

Google Scholar

[9] V. Marinca, N. Herisanu, An optimal homotopy asymptotic approach applied to nonlinear MHD Jeffery – Hamel flow, Mathematical Problem in Engineering, article ID 169056 (2011) DOI: 10. 1155(20111).

DOI: 10.1155/2011/169056

Google Scholar

[10] V. Marinca, N. Herisanu, C. Bota, B. Marinca, An optimal homotopy asymptotic method applied to the steady flow of a fourth-grade fluid past a porous plate, Appl. Math. Lett. 22 (2009), 245-251.

DOI: 10.1016/j.aml.2008.03.019

Google Scholar

[11] S. Miroslav, The Mechanics and Thermodynamics of Continuous Media (Theoretical and Mathematical Physics), Springer, (2002).

Google Scholar

[12] L. Landau, E. Lifschitz, Theorie de l'Elasticite, Nauka, Moskow, (1967).

Google Scholar

[13] Y. A. Kosevich, Nonlinear sinusoidal waves and their superposition in anharmonic lattices-reply, Phys. Lett. 71 (1993), 2058-(2062).

DOI: 10.1103/physrevlett.71.2058

Google Scholar

[14] C. W. Lim, L. H. He, Exact solution of a compositionally graded piezoelectric layer under uniform stretch, bending and twisting, Int. J. Mech. Sci., 43(11) (2001), 2479-2492.

DOI: 10.1016/s0020-7403(01)00059-5

Google Scholar

[15] C. W. Lim, Z. R. Li, G. W. Wei, DSC-Ritz method for high-mode frequency analysis of thick shallow shells, Int. J. Num. Meth. Eng., 62(2) (2005), 205-232.

DOI: 10.1002/nme.1179

Google Scholar