[1]
R. Fu, Q. Y. Long, C. W. Lung, Relevance elastic exponent on the thickness of porous plate, J. of Phy. Condensed Matter, 4 (1), 1992, 49-52.
Google Scholar
[2]
A. Pompei, M. A. Rigano, On the bending of micropolar plates, Int. J. of Eng. Sci., 44 (2006), 1324-1333.
Google Scholar
[3]
K.R. Rajagopal, A.S. Wineman, New exact solutions in nonlinear elasticity, Int. J, Eng. Sci. 23(2) (1985), 217-234.
Google Scholar
[4]
B. -F. Apostol, On a non-linear wave equation in elasticity, Physics Lett. A 318 (2003), 545-552.
DOI: 10.1016/j.physleta.2003.09.064
Google Scholar
[5]
A.H. Bokhari, A.H. Kara, F.D. Zaman, Exact solutions of some general nonlinear wave equations in elasticity, Nonlinear Dyn. DOI 10. 2007/s11071-006-9050-8, 6 pages.
DOI: 10.1007/s11071-006-9050-z
Google Scholar
[6]
M.T. Mustafa, K. Masood, Symmetry solutions of a nonlinear elastic wave equation with third-order anharmonic corrections, Appl. Math. Mech. – Engl. Ed. 30(8) (2009), 1017-1026.
DOI: 10.1007/s10483-009-0808-z
Google Scholar
[7]
E. Alfinito, M.S. Causo, G. Profilo, G. Soliani, A class of nonlinear wave equations containing the continuous Toda case, J. Phys. A 31 (1998), 2173-2189.
DOI: 10.1088/0305-4470/31/9/008
Google Scholar
[8]
V. Marinca, N. Herisanu, Nonlinear Dynamical Systems in Engineering. Some Approximate Approaches, Springer Verlag, Berlin, Heidelberg, (2011).
Google Scholar
[9]
V. Marinca, N. Herisanu, An optimal homotopy asymptotic approach applied to nonlinear MHD Jeffery – Hamel flow, Mathematical Problem in Engineering, article ID 169056 (2011) DOI: 10. 1155(20111).
DOI: 10.1155/2011/169056
Google Scholar
[10]
V. Marinca, N. Herisanu, C. Bota, B. Marinca, An optimal homotopy asymptotic method applied to the steady flow of a fourth-grade fluid past a porous plate, Appl. Math. Lett. 22 (2009), 245-251.
DOI: 10.1016/j.aml.2008.03.019
Google Scholar
[11]
S. Miroslav, The Mechanics and Thermodynamics of Continuous Media (Theoretical and Mathematical Physics), Springer, (2002).
Google Scholar
[12]
L. Landau, E. Lifschitz, Theorie de l'Elasticite, Nauka, Moskow, (1967).
Google Scholar
[13]
Y. A. Kosevich, Nonlinear sinusoidal waves and their superposition in anharmonic lattices-reply, Phys. Lett. 71 (1993), 2058-(2062).
DOI: 10.1103/physrevlett.71.2058
Google Scholar
[14]
C. W. Lim, L. H. He, Exact solution of a compositionally graded piezoelectric layer under uniform stretch, bending and twisting, Int. J. Mech. Sci., 43(11) (2001), 2479-2492.
DOI: 10.1016/s0020-7403(01)00059-5
Google Scholar
[15]
C. W. Lim, Z. R. Li, G. W. Wei, DSC-Ritz method for high-mode frequency analysis of thick shallow shells, Int. J. Num. Meth. Eng., 62(2) (2005), 205-232.
DOI: 10.1002/nme.1179
Google Scholar