Optical and Luminescence Characteristic of Dy3+ Doped ZnO-Bao-TeO2 Glass System

Article Preview

Abstract:

Properties of Dy3+ doped ZnO-BaO-TeO2 (ZBaT) glass systems with composition 15ZnO-5BaO-(80-x)TeO2-xDy2O3 was measured for the composition range 1x8 (in mol%). The glasses were prepared by normal melt quenching technique and characterized their physical, optical and photoluminescence properties. The optical absorption spectra show peaks at 4I15/2 (466 nm), 4F9/2 (475 nm), 6F3/2 (756 nm), 6F5/2 (804 nm), 6F7/2+ 6H5/2 (904 nm), 6F9/2+ 6H7/2 (1096 nm), 6F11/2 +6H9/2 (1280 nm) and 6H11/2 (1640 nm), reflecting the Dy3+ in glass matrices. From the excitation spectra, five obvious excitation peaks were observed as follows: The ground state 6H15/2 to the excited states 4M7/2 + 6P7/2 (351nm), 4I11/2 (366 nm), 4I13/2 + 4F7/2 (385 nm), 4G11/2 (426 nm) and 4I15/2 (450 nm) of Dy3+. The emission band at 484, 575 and 661 nm arising from the transition 4F9/26H15/2, 4F9/26H13/2 and 4F9/26H11/2 respectively were observed when the sample was excited by xenon flash lamp at 450 nm. The ZBaT glass doped with 1 mol% of Dy3+ gives the highest result for luminescence properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-31

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.E. Ersundu, G. Karaduman, M. C¸ elikbilek, N. Solak, S. Aydin, Journal of the European Ceramic Society, Vol. 30, (2010), 3087–3092.

DOI: 10.1016/j.jeurceramsoc.2010.07.018

Google Scholar

[2] J. Ozdanova, H. Ticha, L. Tichy, Journal of Non-Crystalline Solids, Vol. 353, (2007), 2799–2802.

DOI: 10.1016/j.jnoncrysol.2007.06.017

Google Scholar

[3] P. Mosnera, K. Vosejpkova, L. Koudelka, L. Montagne, B. Revel, Materials Chemistry and Physics, Vol. 124, (2010), 732–737.

Google Scholar

[4] G. Gao, L. Hua, H. Fan, G. Wang, K. Li, S. Feng, S. Fan, H. Chen, J. Pan, J. Zhang, Optical Materials, Vol. 32, (2009), 402–405.

Google Scholar

[5] R. Rolli, K. Gatterer, M. Wachtler, M. Bettinelli, A. Speghini, D. Ajo, Spectrochimica Acta Part A, Vol. 57, (2001), 2009–(2017).

DOI: 10.1016/s1386-1425(01)00474-7

Google Scholar

[6] N. Manikandan, A. Ryasnyanskiy, J. Toulouse, Journal of Non-Crystalline Solids, Vol. 358, (2012), 947–951.

DOI: 10.1016/j.jnoncrysol.2012.01.003

Google Scholar

[7] A. V. Malakhovskii, V. A. Isachenko, A. L. Sukhachev, A. M. Potseluyko,V. N. Zabluda, T. V. Zarubina, and I. S. Edelman, Vol. 49, (2007), No. 4, 701–707.

DOI: 10.1134/s1063783407040178

Google Scholar

[8] G. Lakshminarayana, R. Yang, M. Mao, J. Qiu, Optical Materials, Vol. 31, (2009), 1506–1512.

Google Scholar

[9] G.H. Dieke, Spectra and Energy Levels of Rare-Earth Ions in Crystals, New York: John Wiley & sons, (1969).

Google Scholar

[10] D. Rajesh, Y.C. Ratnakaram, M. Seshadri, A. Balakrishna, T. SatyaKrishna, Journal of Luminescence, Vol. 132, (2012), 841–849.

Google Scholar

[11] K. Swapna, Sk. Mahamuda, A. SrinivasaRao, M. Jayasimhadri, T. Sasikala, L.R. Moorthy, Journal of Luminescence, Vol. 139, (2013), 119–124.

DOI: 10.1016/j.jlumin.2013.02.035

Google Scholar

[12] K. Swapna, Sk. Mahamuda, A. SrinivasaRao, M. Jayasimhadri, T. Sasikala, L.R. Moorthy, Ceramics International, accepted 9 April (2013).

Google Scholar

[13] M. Chandra Shekhar Reddy, B. Appa Rao, M.G. Brik, A. Prabhakar Reddy, P. Raghava Rao, C.K. Jayasankar, N. Veeraiah, Applied Physics B, Vol 108, (2012), 455–461.

DOI: 10.1007/s00340-012-4983-z

Google Scholar