Effect of AlTiC Master Alloy on Microstructure and Mechanical Properties of Mg-Zn-Y Alloys

Article Preview

Abstract:

Recently, Mg-Zn-Y alloy containing icosahedral quasicrystalline (I-phase) has attracted significant interest because it has enhanced strength and ductility at ambient temperature and at elevated temperature. However, the thermal stable I-phase with chemical composition of Mg3YZn6 was formed as a coarse eutectic pocket structure in the α-Mg matrix during conventional solidification in Mg-Zn-Y alloy system. The influence of AlTiC master alloy on the morphology and amounts of I-phase in Mg-Zn-Y alloy have been investigated in this study. The microstructure and constituent phases are characterized from optical microscope (OM), X-ray diffraction (XRD) and field emission gun scanning electron microscopy (FEG-SEM). It is found that the addition of AlTiC master alloy not only can change the morphology of the I-phase, but also can increase the amount of the I-phase. The formation and growth mechanism of the I-phase have been discussed. On the other hand, the grains are also refined. It may be attributed to the combined effect of TiC and Al4C3 particles, because TiC and Al4C3 particles can act as heterogeneous nucleation cores of α-Mg grains. The effect of AlTiC master alloy on the ultimate tensile strength (UTS) and the elongation to failure (EL) is also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

48-52

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Yi, E.S. Park, J.B. Ok, et al: Materials Science and Engineering A Vol. 300 (2001), p.312.

Google Scholar

[2] D.H. Bae, M.H. Lee, K.T. Kim, et al: Journal of Alloys and Compounds Vol. 342 (2002), p.445.

Google Scholar

[3] D.H. Bae, S.H. Kim, D.H. Kim, et al: Acta Materialia Vol. 50 (2002), p.2343.

Google Scholar

[4] I.J. Kim, D.H. Bae, D.H. Kim: Materials Science and Engineering A Vol. 359 (2003), p.313.

Google Scholar

[5] J.Y. Lee, H. K. Lim, D.H. Kim, et al: Materials Science and Engineering A Vol. 449-451 (2007), p.987.

Google Scholar

[6] A. Müller, G. Garcés, P. Pérez, et al: Journal of Alloys and Compounds Vol. 443 (2007), p. L1.

Google Scholar

[7] A. Singh, M. Nakamura, M. Watanabe, et al: Scripta Materialia Vol. 49 (2003), p.417.

Google Scholar

[8] M.Y. Zheng, X.G. Qiao, S.W. Xu, et al: Trans. Nonferrous Met. Soc. China Vol. 15 (2005), p.616.

Google Scholar

[9] G. Garcés, A. Müller, E. Oñorbe, et al: Journal of materials processing technology Vol. 206 (2008), p.99.

Google Scholar

[10] Z. P. Luo, S. Q. Zhang, Y. L. Tang, et al: Scr. Metall Vol. 28 (1993), p.1513.

Google Scholar

[11] Y.C. Lee, A.K. Dahle, D.H. Stjohn: Metallurgical and Materials Transactions A Vol. 31 (2000), p.2895.

Google Scholar

[12] Q. Ma, D.H. Stjohn, M.T. Frost: Scripta Materialia Vol. 46 (2002), p.649.

Google Scholar

[13] D. H. Stjohn, Q. MA, M. A. Easton, et al: Metallurgical and Materials Transactions A Vol. 36 (2005), p.1669.

Google Scholar

[14] Y. Zhang, X.Q. Zeng, L.F. Liu, et al: Materials Science and Engineering A Vol. 373 (2004), p.320.

Google Scholar

[15] Xiaoqin Zeng, Ya Zhang, Chen Lu, et al: Journal of Alloys and Compounds Vol. 395 (2005), p.213.

Google Scholar

[16] D.K. Xu, L. Liu, Y.B. Xu, et al: Acta Materialia Vol. 56 (2008), p.985.

Google Scholar

[17] X.G. Ma, X.F. Liu, H.M. Ding: Journal of Alloys and Compounds Vol. 471 (2009), p.56.

Google Scholar

[18] Y. Birol: Journal of Alloys and Compounds Vol. 422 (2006), p.128.

Google Scholar

[19] T. Wang, T. Gao, J. f. Nie, et al: Materials Characterization Vol. 83 (2013), p.13.

Google Scholar

[20] H.W. Cui, J.C. Liu, W. Ye, et al: Foundry technology Vol. 29 (2008), p.80.

Google Scholar

[21] H.W. Cui, M.S. Hou, J. Dong, et al: Foundry technology Vol. 29 (2008), p.507.

Google Scholar

[22] D.H. Kima, J.Y. Lee, H.K. Lim, et al: Materials Science and Engineering A Vol. 487 (2008), p.481.

Google Scholar

[23] D. Qiu, M.X. Zhang, P.M. Kelly: Scripta Materialia Vol. 61 (2009), p.312.

Google Scholar

[24] D. Qiu, M.X. Zhang: Journal of Alloys and Compounds Vol. 488 (2009), p.260.

Google Scholar

[25] D. Qiu, M.X. Zhang, J.A. Taylor, et al: Acta Materialia Vol. 57 (2009), p.3052.

Google Scholar

[26] Z.P. Luo, S.Q. Zhang: Journal of Materials Science letters Vol. 12 (1993), p.1490.

Google Scholar

[27] J.Q. Yu, W.Z. Yi, B.D. Chen, et al: Constitution of binary alloys (Shanghai science and Technology Press, Shanghai 1987).

Google Scholar

[28] W.L. Ren, Q.A. Li, J.H. Li, et al: China Foundry Vol. 7 (2010), p.362.

Google Scholar

[29] S.R. Wang, P.Q. Guo, L.Y. Yang, et al: Journal of Materials Engineering and Performance Vol. 18(2009), p.137.

Google Scholar

[30] Z.L. Liu, Y.F. Shen, Z. Q. Li, et al: Journal of Materials Science & Engineering Vol. 22 (2004), p.146.

Google Scholar

[31] W.D. Callister, Jr: Materials Science and Engineering: An Introduction, 7th Edition (John Wiley&Sons, Inc. New York 2007).

Google Scholar

[32] J.Y. Lee, D.H. Kim, H. K. Lim, et al: Materials Letters Vol. 59 (2005), p.3801.

Google Scholar