[1]
M. Alexander, Y. Ballim, K. Stanish, A framework for use of durability indexes in performance-based design and specifications for reinforced concrete structures, Mat. Struct. 41 (2008) 921–936.
DOI: 10.1617/s11527-007-9295-0
Google Scholar
[2]
Trevor J. Kirkpatrick, Richard E. Weyers, Christine M. Anderson-Cook, Michael M. Sprinkel, Probabilistic model for the chloride-induced corrosion service life of bridge decks, Cem. Conc. Res. 32 (2002) 1943–(1960).
DOI: 10.1016/s0008-8846(02)00905-5
Google Scholar
[3]
L. Tang, Engineering expression of the ClinConc model for prediction of free and total chloride ingress in submerged marine concrete, Cem. Conc. Res. 38 (2008) 1092–1097.
DOI: 10.1016/j.cemconres.2008.03.008
Google Scholar
[4]
M. Collepardi, A. Marcialis, R. Turriziani, The kinetics of chloride ions penetration in concrete (in Italian), Il Cemento 67 (1970) 157–164.
Google Scholar
[5]
O. Truc, J.P. Ollivier, L.O. Nilsson, Numerical simulation of multi-species transport through saturated concrete during a migration test – MsDiff code, Cem. Concr. Res. 10 (2000) 1581–1592.
DOI: 10.1016/s0008-8846(00)00305-7
Google Scholar
[6]
E. Samson, J. Marchand, Numerical solution of the extended Nernst–Planck model, J. Colloid Interface Sci. 215 (1999) 1–8.
DOI: 10.1006/jcis.1999.6145
Google Scholar
[7]
L.Y. Li, C.L. Page, Finite element modelling of chloride removal from concrete by an electrochemical method, Corros. Sci. 42 (2000) 2145–2165.
DOI: 10.1016/s0010-938x(00)00044-5
Google Scholar
[8]
L. Tang, Engineering expression of the ClinConc model for prediction of free and total chloride ingress in submerged marine concrete, Cem. Conc. Res. 38 (2008) 1092–1097.
DOI: 10.1016/j.cemconres.2008.03.008
Google Scholar
[9]
L. Tang, Chloride Penetration Profiles and Diffusivity in Concrete Under Different Conditions, Publication P-97: 3, Dept. of Building Materials, Chalmers University of Technology, , Sweden, (1997).
Google Scholar