Non-Oscillatory Finite Compact Scheme for the Equations of Ideal Magnetohydrodynamics

Article Preview

Abstract:

Although the equations of ideal Magnetohydrodynamics (MHD) is a non-strictly hyperbolic system, they have a wave-like structure analogous to that of the hydrodynamics equations, various numerical schemes for hydrodynamics equations have been extended to solve the MHD equations. The finite compact (FC) scheme treats the discontinuity as the internal boundary and avoids the global dependence of the traditional compact schemes. By using a parameter-free shock detecting method, the computational domain is divided into a series of smooth regions and shock wave regions. In the shock wave regions, the shock capturing scheme is used to construct the numerical flux, and in the smooth regions the compact scheme is used, the flux of shock wave region is automatically the boundary formulation of the compact scheme. Hence, the FC scheme can resolve shock essentially non-oscillatory and achieve high order of accuracy in smooth region. This paper develops the non-oscillation finite compact scheme for the ideal MHD equations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-162

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Brio, C.C. Wu, An upwind differencing scheme for the equations of ideal magnetohydrodynamics, Journal of Computational Physics. 75 (1988) 400-422.

DOI: 10.1016/0021-9991(88)90120-9

Google Scholar

[2] P.L. Roe, D.S. Balsara, Notes on the eigensystem of magnetohydrodynamics, SIAM J. Appl. Math. 56 (1996)57-67.

DOI: 10.1137/s003613999427084x

Google Scholar

[3] K.G. Powell, P.L. Roe, T.J. Linde, T.I. Gombosi, D.L. De Zeeuw, A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics, Journal of Computational Physics. 154 (1999) 284-309.

DOI: 10.1006/jcph.1999.6299

Google Scholar

[4] G.S. Jiang, C.C. Wu, A High-Order WENO Finite Difference Scheme for the Equations of Ideal Magnetohydrodynamics, Journal of Computational Physics. 150 (1999) 561-594.

DOI: 10.1006/jcph.1999.6207

Google Scholar

[5] H.M. Damevin, K.A. Hoffmann, Development of a modified Runge-Kutta scheme with TVD limiters for ideal three-dimensional magnetogasdynamics, AIAA . 2001 (2001) 27-39.

DOI: 10.2514/6.2001-2739

Google Scholar

[6] D.S. Balsara, D.S. Spicer, A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamics simulation, Journal of Computational Physics. 149 (1999) 270-292.

DOI: 10.1006/jcph.1998.6153

Google Scholar

[7] S.H. Han, J. Lee, K.M. Kim, Accurate and Robust Pressure Weight Advection Upstream Splitting Method for Magnetohydrodynamics Equations, AIAA Journal. 47 (2009) 970-981.

DOI: 10.2514/1.39375

Google Scholar

[8] Y.Q. Shen, G.C. Zha, M.A. Huerta, E-CUSP scheme for the equations of ideal magnetohydrodynamics with high order WENO Scheme, Journal of Computational Physics. 231 (2012) 6233-6247.

DOI: 10.1016/j.jcp.2012.04.015

Google Scholar

[9] G.S. Jiang, C.W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126(1996) 202-228.

Google Scholar

[10] R. Borges, M. Carmona, B. Costa, W.S. Don, An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws, Journal of Computational Physics. 227 (2008) 3191-3211.

DOI: 10.1016/j.jcp.2007.11.038

Google Scholar

[11] S.H. Zhang, S.F. Jiang, C.W. Shu, Development of nonlinear weighted compact schemes with increasingly higher order accuracy, Journal of Computational Physics. 227(2008) 7294-7321.

DOI: 10.1016/j.jcp.2008.04.012

Google Scholar

[12] E. Johnsen, J. Larsson, A.V. Bhagatwala, W. H. Cabot, P. Moin, B. J. Olson, P. S. Rawat, S. K. Shankar, B. Sjogreen, H. C. Yee, X. Zhong, and S. K. Lele, Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves, Journal of Computational Physics. 229(2010).

DOI: 10.1016/j.jcp.2009.10.028

Google Scholar

[13] Y.Q. Shen, G.W. Yang, Z. Gao, High-resolution finite compact difference schemes for hyperbolic conservation laws, J. Comput. Phys. 216(2006) 114-137.

DOI: 10.1016/j.jcp.2005.11.027

Google Scholar

[14] Y.Q. Shen, G.W. Yang, Hybrid finite compact-WENO schemes for shock calculation, International Journal for Numerical Methods in Fluids. 53 (2007) 531-560.

DOI: 10.1002/fld.1286

Google Scholar

[15] Y.Q. Shen, G.C. Zha, Generalized finite compact difference scheme for shock/complex flowfield interaction, Journal of Computational Physics. 230 (2011) 4419-4436.

DOI: 10.1016/j.jcp.2011.01.039

Google Scholar

[16] S.K. Lele, Compact finite difference schemes with spectral-like resolution, Journal of Computational Physics. 103(1992) 16-42.

DOI: 10.1016/0021-9991(92)90324-r

Google Scholar

[17] C.W. Shu, O. Osher, Efficient implementation of essentially non-oscillatory shock capturing schemes, Journal of Computational Physics. 77 (1988) 439-471.

DOI: 10.1016/0021-9991(88)90177-5

Google Scholar

[18] G. Toth, The∇・B=0 constraint in shock-capturing magnetohydrodynamics codes, Journal of Computational Physics. 161 (2000) 605-652.

DOI: 10.1006/jcph.2000.6519

Google Scholar

[19] S.A. Orszag, C.M. Tang, Small-scale structure of two-dimensional magnetohydrodynamic turbulence, J. Fluid. Mech. 90 (1979) 129-143.

DOI: 10.1017/s002211207900210x

Google Scholar