[1]
M. Brio, C.C. Wu, An upwind differencing scheme for the equations of ideal magnetohydrodynamics, Journal of Computational Physics. 75 (1988) 400-422.
DOI: 10.1016/0021-9991(88)90120-9
Google Scholar
[2]
P.L. Roe, D.S. Balsara, Notes on the eigensystem of magnetohydrodynamics, SIAM J. Appl. Math. 56 (1996)57-67.
DOI: 10.1137/s003613999427084x
Google Scholar
[3]
K.G. Powell, P.L. Roe, T.J. Linde, T.I. Gombosi, D.L. De Zeeuw, A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics, Journal of Computational Physics. 154 (1999) 284-309.
DOI: 10.1006/jcph.1999.6299
Google Scholar
[4]
G.S. Jiang, C.C. Wu, A High-Order WENO Finite Difference Scheme for the Equations of Ideal Magnetohydrodynamics, Journal of Computational Physics. 150 (1999) 561-594.
DOI: 10.1006/jcph.1999.6207
Google Scholar
[5]
H.M. Damevin, K.A. Hoffmann, Development of a modified Runge-Kutta scheme with TVD limiters for ideal three-dimensional magnetogasdynamics, AIAA . 2001 (2001) 27-39.
DOI: 10.2514/6.2001-2739
Google Scholar
[6]
D.S. Balsara, D.S. Spicer, A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamics simulation, Journal of Computational Physics. 149 (1999) 270-292.
DOI: 10.1006/jcph.1998.6153
Google Scholar
[7]
S.H. Han, J. Lee, K.M. Kim, Accurate and Robust Pressure Weight Advection Upstream Splitting Method for Magnetohydrodynamics Equations, AIAA Journal. 47 (2009) 970-981.
DOI: 10.2514/1.39375
Google Scholar
[8]
Y.Q. Shen, G.C. Zha, M.A. Huerta, E-CUSP scheme for the equations of ideal magnetohydrodynamics with high order WENO Scheme, Journal of Computational Physics. 231 (2012) 6233-6247.
DOI: 10.1016/j.jcp.2012.04.015
Google Scholar
[9]
G.S. Jiang, C.W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126(1996) 202-228.
Google Scholar
[10]
R. Borges, M. Carmona, B. Costa, W.S. Don, An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws, Journal of Computational Physics. 227 (2008) 3191-3211.
DOI: 10.1016/j.jcp.2007.11.038
Google Scholar
[11]
S.H. Zhang, S.F. Jiang, C.W. Shu, Development of nonlinear weighted compact schemes with increasingly higher order accuracy, Journal of Computational Physics. 227(2008) 7294-7321.
DOI: 10.1016/j.jcp.2008.04.012
Google Scholar
[12]
E. Johnsen, J. Larsson, A.V. Bhagatwala, W. H. Cabot, P. Moin, B. J. Olson, P. S. Rawat, S. K. Shankar, B. Sjogreen, H. C. Yee, X. Zhong, and S. K. Lele, Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves, Journal of Computational Physics. 229(2010).
DOI: 10.1016/j.jcp.2009.10.028
Google Scholar
[13]
Y.Q. Shen, G.W. Yang, Z. Gao, High-resolution finite compact difference schemes for hyperbolic conservation laws, J. Comput. Phys. 216(2006) 114-137.
DOI: 10.1016/j.jcp.2005.11.027
Google Scholar
[14]
Y.Q. Shen, G.W. Yang, Hybrid finite compact-WENO schemes for shock calculation, International Journal for Numerical Methods in Fluids. 53 (2007) 531-560.
DOI: 10.1002/fld.1286
Google Scholar
[15]
Y.Q. Shen, G.C. Zha, Generalized finite compact difference scheme for shock/complex flowfield interaction, Journal of Computational Physics. 230 (2011) 4419-4436.
DOI: 10.1016/j.jcp.2011.01.039
Google Scholar
[16]
S.K. Lele, Compact finite difference schemes with spectral-like resolution, Journal of Computational Physics. 103(1992) 16-42.
DOI: 10.1016/0021-9991(92)90324-r
Google Scholar
[17]
C.W. Shu, O. Osher, Efficient implementation of essentially non-oscillatory shock capturing schemes, Journal of Computational Physics. 77 (1988) 439-471.
DOI: 10.1016/0021-9991(88)90177-5
Google Scholar
[18]
G. Toth, The∇・B=0 constraint in shock-capturing magnetohydrodynamics codes, Journal of Computational Physics. 161 (2000) 605-652.
DOI: 10.1006/jcph.2000.6519
Google Scholar
[19]
S.A. Orszag, C.M. Tang, Small-scale structure of two-dimensional magnetohydrodynamic turbulence, J. Fluid. Mech. 90 (1979) 129-143.
DOI: 10.1017/s002211207900210x
Google Scholar