Application of Homotopy Perturbation Method for the Generalized Burgers-Fisher Equation

Article Preview

Abstract:

The homotopy perturbation method (HPM) is generalized to solve the generalized Burgers-Fisher equation, and some new analytical solutions for the given system are achieved. Furthermore, the comparison of the result obtained using this method with the exact ones reveals that the HPM is a promising tool for solving nonlinear systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

173-178

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Gao, Science in China A 6(1985)58.

Google Scholar

[2] R.A. Fisher, Ann. Eugenics 7(1937)355.

Google Scholar

[3] N.F. Britton, Reaction-diffusion equation and their applications to biology, New York: AcademicPress; (1986).

Google Scholar

[4] D.A. Frank-Kamenetskii, Diffusion and heat exchange in chemical kinetics, New Jersey: Princeton University Press; (1955).

Google Scholar

[5] P.C. Fife and J.B. McLeod, Arch. Rational Mech. Anal. 65(1977)335.

Google Scholar

[6] M.D. Bramson, Comm. Pure Appl. Math. 31(1978)531.

Google Scholar

[7] J. Riordan, C.R. Doering and D. ben-Avraham, Phys. Rev. Lett. 75(1995)565.

Google Scholar

[8] S. Coen, M. Tlidi, Ph. Emplit and M. Haelterman, Phys. Rev. Lett. 83(1999)2328.

DOI: 10.1103/physrevlett.83.2328

Google Scholar

[9] J. Canosa, J. Math. Phys. 10(1969)1862.

Google Scholar

[10] J.H. He, Int. J. Non-Linear Mech. 35(2000)37.

Google Scholar

[11] J.H. He, Appl. Math. Comput. 135(2003)73.

Google Scholar

[12] A. Sadighi and D.D. Ganji, Phys. Lett. A 367(2007)83.

Google Scholar

[13] L. Zou, Z. Zong, Z. Wang and L. He, Phys. Lett. A 370(2007)287.

Google Scholar

[14] J. Biazar, M. Eslami and H. Aminikhah, Chaos, Solitons Fractals, 42(2009)3020.

DOI: 10.1016/j.chaos.2009.04.016

Google Scholar

[15] X. Y. Wang, Z. S. Shu, Y. K. Lu, J. Phys. A: Math. Gen. 23 (1990) 271.

Google Scholar

[16] H.T. Chen and H.Q. Zhang, Chaos, Solitons Fractals, 19(2004)71.

Google Scholar

[17] D. Kaya and S.M. El-Sayed, Appl. Math. Comput. 152(2004)403.

Google Scholar

[18] H.N. A Ismail and A.A. A Rabboh, Appl. Math. Comput. 154(2004)203.

Google Scholar

[19] A.M. Wazwaz, Appl. Math. Comput. 169(2005)321.

Google Scholar