[1]
R. P. Agarwal, P, Y. H. Pang, Opial Inequalities with Applications in Differential and Difference Equations, Kluwer, Dordecht, (1995).
Google Scholar
[2]
M. Bohner and A. Peterson, Dynamic Equations on Time Scales : An Introduction with Application, Birkhauser, Boston, MA, (2001).
Google Scholar
[3]
M. Bohner and A. Peterson, \ Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, MA, (2003).
Google Scholar
[4]
M. Bohner and B. Kaymakcalan , Opial inequalities on time scales, Ann. Polon. Math., 77(1), (2001), 11-20.
DOI: 10.4064/ap77-1-2
Google Scholar
[5]
R.P. Agarwal and M. Bohner, Inequalities on Time Scales: A survey, Math. Inequal. Appl., 4(4), (2001), 535-557.
Google Scholar
[6]
B. Karpuz, B. Kaymakcalan and Ozkan Ocalan, A Generalization of Opial's inequality and applications to second-order dynamic equations, Diff. Eqs. and Dynamical Systems, 18(1\&2), (2010), 11-18.
DOI: 10.1007/s12591-010-0001-2
Google Scholar
[7]
R. C. Brown and D. B. Hinton, Opial's inequality and oscillation of 2nd order equations, Proc. Amer. Math. Soc., 125(4), (1997), 1123-1129.
DOI: 10.1090/s0002-9939-97-03907-5
Google Scholar
[8]
L. Li, M. Han, Some new Opial type inequalities and applications for second order integro-differential dynamic equations on time scales, submitted to journal.
DOI: 10.1016/j.amc.2014.01.136
Google Scholar