[1]
Tian R L, Zhang Q H, He, X J, Calculation of coefficients of simplest normal forms of Hopf and generalized Hopf bifurcations, Transactions of Tianjin University, 13(1), 2007: 18-22.
Google Scholar
[2]
Ruilan Tian, the simplest normal form and electromechanical coupling nonlinear bifurcation, chaos research: [Ph.D. Thesis ], Tianjin; Tianjin University, (2008).
Google Scholar
[3]
W. Zhang, F. X. Wang, Jean W. Zu. Computation of normal forms for high dimensional non-linear systems and application to non-planar non-linear oscillations of a cantilever beam [J]. Journal of Sound and Vibration, 278, 2004, 949-974.
DOI: 10.1016/j.jsv.2003.10.021
Google Scholar
[4]
Zhang Wei, Normal form and codimension 3 degenerate bifurcation of a nonlinear dynamical system[J]. Acta Mechanica Sinica, 1993, 25(5): 548~559.
Google Scholar
[5]
Zhang Wei, Development of modern theory of nonlinear dynamical systemswith parametric excitations[J ], Advances in Mechanics, 1998, 28(1): 1~16.
Google Scholar
[6]
Bi Q S, Yu P, Symbolic computation of normal forms for semi-simple cases, Journal of computation and applied mathematics, 1999, 102(2): 195~220.
DOI: 10.1016/s0377-0427(98)00222-2
Google Scholar
[7]
ZHANG Qi-chang, HU Lan-xia, HE Xue-jun. Study on the simplest normal forms of nonresonant double Hopf bifurcation [J]. Journal of Vibration Eng ineering, 2005, 18(3): 384-388.
Google Scholar
[8]
Cushman R, Deprit A, Mosak R, Normal forms and representation theory[J]. Journal of Mathematic and Physics, 1983, 24(5): 2103~2116.
Google Scholar
[9]
Cushman R, Notes on normal forms, USA: Lecture Notes of MSU, (1985).
Google Scholar
[10]
Cushman R, Sanders J, Nilpotent normal forms and representation theory of sl(2, R), Multi-parameter bifurcation theory, Contemporary Mathematics, 1986, 56: 31~51.
DOI: 10.1090/conm/056/855083
Google Scholar
[11]
Takens F, Singularities of vector fields, Publ. Math. Inst. Hautes Ètudes Sci. 1974, 43(1): 47~100.
Google Scholar
[12]
Chen Yi, Zhang Wei, Computation of the third order normal form for six-dimensional nonlinear dynamical systems [J]. Journal of dynamica and control, 2004, 2(3), 31~35.
Google Scholar
[13]
Q. C. Zhang, X. J. He, S. Y. Hao. Computation of the Simplest Normal Forms for Resonant Double Hopf Bifurcations System Based on Lie Transform. Transactions of Tianjin University, 2006, 12(3): 180~185.
Google Scholar