Effect of Mn Doping on the Photocatalytic Photodegradation Properties of Zn1−xMnxO Nanomaterials

Article Preview

Abstract:

We study the effect of Mn doping on the photocatalytic photodegradation properties of Zn1−xMnxO nanomaterials to the methyl orange. The Zn1−xMnxO powders and thin films were synthesized by the sol-gel, spin coating and high temperature annealing processes. UV-visible (UV-Vis) spectroscopy was used to examine the radiated and non-radiated samples to study their photocatalytic photodegradation property of the methyl orange. Our results showed that Mn doping can enhance the decolorization efficiency of methyl orange at optimal Mn doping levels, and there exists an optimum Mn doping (x~0.18) at which photodegradation efficiency is nearly optimized.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2234-2238

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.W. Matthews, Water Res. 25 (1991) p.1169.

Google Scholar

[2] A. Sharma, P. Rao, R.P. Mathur, S.C. Ameta, J. Photochem. Photobiol. A: Chem. 86 (1995) p.197.

Google Scholar

[3] C.A.K. Gouve, F. Wypych, S.G. Moraes, N. Dura, P. Peralta-Zamora, Chemosphere 40 (2000) p.427.

Google Scholar

[4] S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, V. Murugesan, Sol. Energy Mater. Sol. Cells 77 (2003) p.65.

DOI: 10.1016/s0927-0248(02)00255-6

Google Scholar

[5] Ruh Ullah, Joydeep Dutta, Journal of Hazardous Materials 156 (2008) p.194–200.

Google Scholar

[6] T.Z. Tong, J. L. Zhang, B. Z. Tian, F. Chen, D. N. He, Journal of Hazardous Materials 155 (2008) p.572–579.

Google Scholar

[7] S. Ekambaram, Y. Iikubo, A. Kudo, J. Alloys Compd. 433 (2007) p.237.

Google Scholar

[8] H.F. Lin, S.C. Liao, S.W. Hung, J. Photochem. Photobiol. A: Chem. 174 (2005) p.82.

Google Scholar

[9] V. Vamathevan, H. Tse, R. Amal, G. Low, S. McEvoy, Catal. Today 68 (2001) p.201.

Google Scholar

[10] J.C. Yu, J. Lin, R.W.M. Kwok, J. Phys. Chem. B 102 (1998) p.5094.

Google Scholar

[11] K. Wilke, H.D. Breuer, J. Photochem. Photobiol. A: Chem. 121(1999) p.49.

Google Scholar

[12] A.A. Khodja, T. Sehili, J.F. Pilichowski, P. Boule, J. Photochem. Photobiol. A: Chem. 141 (2001) p.231.

Google Scholar

[13] I. Poulios, I. Tsachpinis, J. Chem. Technol. Biotechnol. 74 (1999) p.349.

Google Scholar

[14] K. Gouvea, F. Wypych, S.G. Moraes, N. Duran, N. Nagata, P. Peralta-Zamora, Chemosphere 40 (2000) p.433.

Google Scholar

[15] S. Dindar, J. Icli, Photochem. Photobiol. A: Chem. 140 (2001) p.263.

Google Scholar

[16] N. Daneshvar, D. Salari, A.R. Khataee, J. Photochem. Photobiol. A: Chem. 162(2004) p.317.

Google Scholar

[17] R. Wang, J.H. Xin, Y. Yang, H. Liu, L. Xu, J. Hu, Appl. Surf. Sci. 227 (2004) p.312–317.

Google Scholar

[18] K. Vanhesuden W.L. Warren, J.A. Voigt, C.H. Seager, D.R. Tallant, Appl. Phys. Lett. 67 (1995) p.1280–1282.

Google Scholar

[19] S. Colis, H. Bieber, S. Begin-Colin, G. Schmerber, C. Leuvrey, A. Dinia, Chem. Phys. Lett. 422(2006) p.529–533.

DOI: 10.1016/j.cplett.2006.02.109

Google Scholar

[20] Q. Xiao, L. Ouyang, Journal of Alloys and Compounds 479 (2009) p. L4–L7.

Google Scholar

[21] S. Sakthivel, B. Neppolian, B.V. Shankar, B. Arabindoo, M. Palanichamy, V. Murugesan, Sol Ener. Mater. Sol. Cells 77(2003) p.68.

Google Scholar

[22] S.K. Kansal, M. Singh, D. Sud, Journal of Hazardous Materials 141 (2007) p.581.

Google Scholar

[26] E. Chikoidze, Y. Dumont, H.J. von Bardeleben, J. Gleize, O. Gorochov, Journal of Magnetism and Magnetic Materials 316 (2007) p. e181–e184.

DOI: 10.1016/j.jmmm.2007.02.083

Google Scholar