Theoretical Approach in Predicting Perforation of Aluminum Alloy Foam Target against Different Ogive-Nosed Projectile

Abstract:

Article Preview

This paper presents a theoretical approach for investigating the perforation of aluminum alloy foam target against rigid ogive-nosed projectile. The target is composited by two different density single-layer aluminum alloy foam boards. The dynamic cavity expansion theory is applied to formulate analytical model. The perforating process can be divided into 8 stages. The effects of shank diameter, shank length and caliber-radius-head (CRH) on perforating resistance force and kinetic energy variation are analyzed. The results demonstrate that velocity limit increases significantly with the raising of shank diameter in the case of fixed mass and CRH has no significant influence on residual velocity and velocity limit. And the residual velocity can be predicted by the known striking velocity and velocity limit.

Info:

Periodical:

Edited by:

Ran Chen

Pages:

3060-3066

DOI:

10.4028/www.scientific.net/AMM.44-47.3060

Citation:

Y. G. Bao et al., "Theoretical Approach in Predicting Perforation of Aluminum Alloy Foam Target against Different Ogive-Nosed Projectile", Applied Mechanics and Materials, Vols. 44-47, pp. 3060-3066, 2011

Online since:

December 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.