Grouping Rank Product Meta-Analysis Method for Identifying Differentially Expressed Genes in Microarray Experiments

Article Preview

Abstract:

One of the main purposes in analysis of microarray experiments is to identify differentially expressed genes under two experimental conditions. The Meta-analysis method, rank product meta-analysis approach, considered a powerful tool for identification of differentially expressed genes. However, rank product meta-analysis approach used the each dataset in the computation of the fold changes, which leaded to less computational efficiency. Here we modified the rank product meta-analysis approach to obtain an improved model for identifying different gene expression. The new model, grouping rank product approach, adds competitive classification of samples to group datasets before the computation of the fold changes. We used the grouping rank product approach on two simulated datasets and two breast datasets and showed that the grouping rank product approach is not only as accurate as the rank product meta-analysis approach, but also more computational efficient in identifying differentially expressed genes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

905-909

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Willenbrock, J. Salomon, R. Søkilde , K. B. Barken, T. N. Hansen, F. C. Nielsen, S. Møller and T. Litman: Quantitative miRNA expression analysis: Comparing microarrays with next-generation sequencing. RNA. Vol. 15(2009), p. (2028).

DOI: 10.1261/rna.1699809

Google Scholar

[2] G. Stiglic, M. Bajgot and P. Kokol: Gene set enrichment meta-learning analysis: next-generation sequencing versus microarrays. BMC. Vol. 11(2010), p.1471.

DOI: 10.1186/1471-2105-11-176

Google Scholar

[3] X. Y. Wu, Z. Y. Wu, and K. Li: Dentification of differential gene expression for microarray data using recursive random forest. Chin Med J. Vol. 121(2008), p.2492.

DOI: 10.1097/00029330-200812020-00005

Google Scholar

[4] R. Breitling, P. Armengaud, A. Amtmann and P. Herzyk: Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett. Vol. 573(2004), p.83.

DOI: 10.1016/j.febslet.2004.07.055

Google Scholar

[5] F.X. Hong, R. Breitling, C. W. McEntee, B. S. Wittner, J. L. Nemhauser and J. Chory: RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics. Vol. 22(2006), p.282.

DOI: 10.1093/bioinformatics/btl476

Google Scholar

[6] C.G. Zhou, B. Zhang, Y.C. Liang, C. P. HU and D. Chang: (1999) Fuzzy Neural Network and Its Applications in Time Series Analysis. Journal of Software. Vol. 10, p.1304.

Google Scholar

[7] F.X. Hong, R. Breitling, C. W. McEntee, B. S. Wittner, J. L. Nemhauser and J. Chory: A comparison of meta-analysis methods for detecting differentially expressed genes in microarray experiments. Bioinformatics. Vol. 21(2005), p.1565.

DOI: 10.1093/bioinformatics/btl476

Google Scholar

[8] http: /www. ncbi. nlm. nih. gov/geo.

Google Scholar

[9] N. Wang, K. K. Lin, Z. Lu, K. S. Lam, R. Newton, X. Xu, Z. Yu, G. N. Gill and B. Andersen: The LIM-only factor LMO4 regulates expression of the BMP7 gene through an HDAC2-dependent mechanism, and controls cell proliferation and apoptosis of mammary epithelial cells. Oncogene. Vol. 26( 2007), p.6431.

DOI: 10.1038/sj.onc.1210465

Google Scholar

[10] B.M. Bolstad, R.A. Irizarry, M. Astrand, T.P. Speed: A Comparison of Normalization Methods for High Density Oligonucleotide Array Data Based on Variance and Bias. Bioinformatics. Vol. 19(2003), p.185.

DOI: 10.1093/bioinformatics/19.2.185

Google Scholar