Numerical Studies on Laser Welding Process

Article Preview

Abstract:

Laser welding is widely adopted in different industry fields to assemble lightweight structures. Recent research developments relating to finite element analysis of laser welding process is reviewed in this paper. It is concluded that the finite element analysis of laser welding process will allow many different designs to be simulated in order to perform a selection of different system parameters before testing, which would currently take too long to perform or be prohibitively expensive in practice. The main methods used in finite element analysis of laser welding process are discussed and illustrated with brief case studies from the literature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

158-164

Citation:

Online since:

October 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. He: Int J Adv Manuf Technol, Vol. 48, (2010), p.607.

Google Scholar

[2] X. He, F. Gu, A. Ball: Int J Adv Manuf Technol, Vol. 58, (2012), p.643.

Google Scholar

[3] X. He: Int J Adhe Adhe, Vol. 31, (2011), p.248.

Google Scholar

[4] X. He: Appl Mech Mater, Vol. 389 (2013), p.260.

Google Scholar

[5] B.J. Aalderink, B. Pathiraj, R.G.K.M. Aarts: Int J Adv Manuf Technol, Vol. 48, (2010), p.143.

Google Scholar

[6] E. Assunção, L. Quintino, R. Miranda: Int J Adv Manuf Technol, Vol. 49, (2010), p.123.

Google Scholar

[7] M. Rohde, C. Markert, W. Pfleging: Int J Adv Manuf Technol, Vol. 50, (2010), p.207.

Google Scholar

[8] W. Chen, P. Molian: Int J Adv Manuf Technol, Vol. 39, (2008), p.889.

Google Scholar

[9] H.L. Lin, C.P. Chou: Int J Adv Manuf Technol, Vol. 37, (2008), p.513.

Google Scholar

[10] X. Cao, P. Wanjara, J. Huang, C. Munro, A. Nolting: Mater Design, Vol. 32, (2011), p.3399.

Google Scholar

[11] L. Cui, D.Y. He, F. Guo, X.Y. Li, J.M. Jiang: Mater Manuf Process, Vol. 25, (2010), p.1309.

Google Scholar

[12] X. Wang, H. Chen, H.X. Liu, P. Li, Z. Yan, C. Huang, Z. Zhao, Y.X. Gu: Optic Laser Engng, Vol. 51, (2013), p.1245.

Google Scholar

[13] L.D. Scintilla, L. Tricarico: Proceed SPIE, Vol. 8603, (2013).

Google Scholar

[14] G. Labeas, I. Diamantakos: Theoretical Appl Fract Mechanic, Vol. (63-64), (2013), p.69.

Google Scholar

[15] B. Acherjee, A.S.  Kuar, S. Mitra, D. Misra: Optic Laser Tech, Vol. (44), (2012), p.995.

Google Scholar

[16] Q. Han, D. Kim, D. Kim, H. Lee, N. Kim: J Mater Process Tech, Vol. (212), (2012), p.1116.

Google Scholar

[17] N. Siva Shanmugam, G. Buvanashekaran, K. Sankaranarayanasamy: Mater Design, Vol. (34), (2012), p.412.

Google Scholar

[18] S. Bag, A. Trivedi, A. De: Int J Adv Manuf Technol, Vol. (38), (2008), p.575.

Google Scholar

[19] S. Bag, A. Trivedi, A. De: Int J Therm Sci, Vol. (48), (2009), p. (1923).

Google Scholar

[20] J. Karlsson, A.F.H. Kaplan: Appl Surf Sci, Vol. (257), (2011), p.4113.

Google Scholar

[21] G.N. Labeas, G.A. Moraitis, C.V. Katsiropoulos: J Compos Mater, Vol. (44), (2010), p.113.

Google Scholar

[22] X. Wang, P. Li, H. Liu, X. Song, Z. Xu: Chinese J Lasers Vol. (37), (2010), pp.1391-1397, (in Chinese).

Google Scholar

[23] K. Salonitis, D. Drougas, G. Chryssolouris: Physics Procedia, Vol. (5), (2010), p.327.

Google Scholar

[24] G.A. Moraitis, G.N. Labeas: Int J Pressure Vessels Piping, Vol. (86), (2009), p.133.

Google Scholar

[25] Y. Chen, B.D. Liu, R. Kang: J Vibroengineering, Vol. (5), (2013), p.784.

Google Scholar

[26] P. Zeng, L. Mei, L.P. Lei: Adv Mater Research, Vol. (650), (2013), p.572.

Google Scholar

[27] S. Marimuthu, R.M. Eghlio, A.J. Pinkerton, L. Li: J Manufact Sci Engng, Transact ASME, Vol. (135), (2013).

Google Scholar

[28] B. Acherjee, A.S. Kuar, S. Mitra, D. Misra: Optic Laser Tech, Vol. (44), (2012), p.1281.

Google Scholar

[29] Y.M. Lin, G.Q. Jiang: Proceed SPIE, Vol. 8244, (2012).

Google Scholar

[30] K.R. Balasubramanian, T. Suthakar, K. Sankaranarayanasamy, G. Buvanashekaran: Int J Manufact Research, Vol. (7), (2012), p.42.

Google Scholar

[31] P. Lacki, K. Adamus: Comput Struct, Vol. (89), (2011), p.977.

Google Scholar

[32] M. Turna, B. Taraba, P. Ambroz, M. Sahul: Physics Procedia, Vol. (12), (2011), p.638.

Google Scholar

[33] S. Chen, L. Li, Y. Chen, J. Dai, J. Huang: Mater Design, Vol. (32), (2011), p.4408.

Google Scholar

[34] S. Zhao, G. Yu, X. He, Y. Zhang, W. Ning: J Mater Process Tech, Vol. (211), (2011), p.530.

Google Scholar

[35] A. Belhadj, J. Bessrour, J.E. Masse, M. Bouhafs, L. Barrallier: J Mater Process Tech, Vol. (210), (2010), p.1131.

Google Scholar

[36] C.V. Katsiropoulos, G.A. Moraitis, G.N. Labeas, S.G. Pantelakis: Plastics Rubber Compos, Vol. (38), (2009), p.153.

Google Scholar

[37] N.S. Shanmugam, G. Buvanashekaran, K. Sankaranarayanasamy, K. Manonmani: Int J Adv Manuf Technol, Vol. (43), (2009), p.78.

Google Scholar

[38] G. Buvanashekaran, N.S. Shanmugam, K. Sankaranarayanasamy, R. Sabarikanth: J Mech Engng Sci, Vol. (223), (2009), p.1141.

Google Scholar

[39] J. Montalvo-Urquizo, Z. Akbay, A. Schmidt: Comput Mater Sci, Vol. (46), (2009), p.245.

Google Scholar

[40] S. Yu, Y. Yan, Z. Hao, B. Xu, Y. Yin, J. Wang, J. Mo: Key Engng Mater, Vol. (419-420), (2010), p.449.

Google Scholar

[41] L. Schaefer, H. Koch, K. Tangermann-Gerk, M. Hessmann, T. Kunz, T. Frick, M. Schmidt: Physics Procedia, Vol. (5), (2010), p.503.

DOI: 10.1016/j.phpro.2010.08.173

Google Scholar