Influence of Stark Effect and Quantum Wells Thickness on Optical Properties of InGaN Laser Diodes

Article Preview

Abstract:

The influences of Stark Effect and quantum wells thickness on the optical properties of InGaN laser diodes have been studied. The results indicated that the Stark Effect greatly affects the optical properties of InGaN laser diodes, when the quantum wells thickness increases, the Stark Effect leads to deteriorating of the optical proprieties of the InGaN laser diodes. The polarization in the active layer of the InGaN laser diodes has been estimated by the blue shift of the spectral lines. The results shown that the better properties of InGaN laser diodes can be obtained with smaller quantum wells thickness, where more carriers can be restricted in the quantum wells, which leads to a larger recombination rate, which in turn increases the output power of the laser diodes, decreases the threshold current of the laser diodes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-30

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Nakamura, G. Fasol: The Blue Laser Diode, Springer-Verlag, Berlin, Germany, (1997).

Google Scholar

[2] S. Nakamura: Semicond. Sci. Technol. 14 (1999)p. R27–R40.

Google Scholar

[3] T. Asano, M. Takeya, T. Mizuno, S. Ikeda, Y. Ohfuji, T. Fujimoto, K. Oikawa, S. Goto, T. Hashizu, K. Aga and M. Ikeda: Proc. SPIE 5365 (2004)p.297–305.

DOI: 10.1117/12.533187

Google Scholar

[4] F. Bernadini, V. Fiorentini, D. Vanderbilt: Phys. Rev. B 56 (1997) 10024.

Google Scholar

[5] M. -F. Huang, T. -H. Lu: IEEE J. Quantum Electron. 42 (2006) p.820–826.

Google Scholar

[6] L.H. Peng, C.W. Chuang, L.H. Lou: Appl. Phys. Lett. 74 (1999)p.795–797.

Google Scholar

[7] S. Chichibu, T. Azuhata, T. Sota and S. Nakamura: Appl. Phys. Lett. 69 (1996) p.4188–4190.

DOI: 10.1063/1.116981

Google Scholar

[8] Y. Arakawa, A. Yariv: IEEE J Quan-tum Electron. 22 (1986)p.1887–1898.

Google Scholar

[9] G. Franssen, T. Suski, P. Perlin, R. Bohdan, A. Bercha, W. Trzeciaskowski, I. Makarowa, P. Prystawko, M. Leszczynski, I. Grzegory, S. Porowski and S. Kokennyesi: Appl. Phys. Lett. 87 (2005) p.41109–41111.

DOI: 10.1063/1.2000331

Google Scholar

[10] M.D. Craven, S.H. Lim, F. Wu, J.S. speck and S.P. DenBaars: Appl. Phys. Lett. 81 (2002)p.469.

Google Scholar

[11] X. Ni, Ü. Özgür, A.A. Baski, H. Morkoc¸ , L. Zhou, D.J. Smith and C.A. Tran: Appl. Phys. Lett. 90 (2007) 182109.

Google Scholar

[12] J. Zhang, J. Yang, G. Simin, M. Shatalov, M.A. Khan, M.S. Shur and R. Gaska: Appl. Phys. Lett. 77 (2000) p.2668–2670.

DOI: 10.1063/1.1319531

Google Scholar

[13] J. -R. Chen, C. -H. Lee, T. -S. Ko, Y. -A. Chang, T. -C. Lu, H. -C. Kuo, Y. -K. Kuo, S. -C. Wang: J. Lightwave Technol. 26 (2008) p.329–337.

Google Scholar

[14] ISE TCAD User's Manual Release 10. 0, Zurich, Switzerland, (2004).

Google Scholar

[15] S.L. Chuang, C.S. Chang: Phys. Rev. B 54 (1996) p.2491–2504.

Google Scholar

[16] H.Y. Zhang, X.H. He, Y.H. Shih, M. Schurman, Z.C. Feng R. and A. Stall, Opt. Lett. 21 (1996) p.1529–1531.

Google Scholar

[17] Y. -K. Kuo, Y. -A. Chang: IEEE J. Quantum Electron. 40 (2004)p.437–444.

Google Scholar

[18] V. Fiorentini, F. Bernardini, O. Ambacher: Appl. Phys. Lett. 80 (2002)p.1204–1206.

Google Scholar

[19] D. Fritsch, H. Schmidt, M. Grundmann: Phys. Rev. B 67 (2003) 235205.

Google Scholar

[20] E. Michael, Levinshtein, L. Sergey, Rumyantsev and Michael S. Shur: Properties of Advanced Semiconductor Materials, John Wiley & Sons, Toronto, Canada, (2001).

Google Scholar

[21] F. Bernardini, V. Fiorentini: Phys. Rev. B 64 (2001) 085207.

Google Scholar