[1]
J. Daugman. High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Analysis and Machine Intelligence, 15 (11), 1993: 1148-1161.
DOI: 10.1109/34.244676
Google Scholar
[2]
J. Daugman. New methods in iris recognition. IEEE Trans. Cybernetics, 37 (5), 2007: 1167-1175.
DOI: 10.1109/tsmcb.2007.903540
Google Scholar
[3]
R. PWildes. Iris recognition: an emerging biometric technology. Proceedings of the IEEE, 85(9), 1997: 348-1363.
Google Scholar
[4]
Y. Wang, Y. Zhu, T. Tan. Biometrics personal identification based on iris pattern , Acta Automatic Sinica, 28(1): 2002: 1-10.
Google Scholar
[5]
K. Roy, P. Bhattacharya, C. Y. Suen CY. Iris segmentation using variational level set method. Optics and Lasers in Engineering, 49 (4), 2011: 578-588.
DOI: 10.1016/j.optlaseng.2010.09.011
Google Scholar
[6]
S. Pundlik, D. Woodard, S. Birchfield S. Iris segmentation in non-ideal images using graph cuts. Image Vision and Computing, 28 (12), 2010: 1671-1681.
DOI: 10.1016/j.imavis.2010.05.004
Google Scholar
[7]
A. Miguel. Luengo-Oroz, F. Emmanuel, J. Angulo. Robust iris segmentation on uncalibrated noisy images using mathematical morphology. Image Vision and Computing, 28 (2), 2010: 246-253.
DOI: 10.1016/j.imavis.2009.04.018
Google Scholar
[8]
H. L. Wan, M. Han, T. Wang. Multiresolution Based Segmentation for Non-ideal Iris with Nonlinear Diffusion. Automation and Robotics, D. Yang, Editor. Springer Berlin Heidelberg, 2012: 107-111.
Google Scholar
[9]
Ju, Y.W., Tian, Z., Zhang, Y. (2006). Efficient image segmentation method based on resolution and region information fusion. Chinese Optics Letters, 4(11): 639~642.
Google Scholar
[10]
Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins. (2009). Digital Image Processing(3rd edition). Beijing: Publishing House of Electronics Industry, 1-609.
Google Scholar
[11]
Huang, J.L., Zheng, X.M. (2008). Improved image edge detection based on Canny operator. Computer and Applications, 44(25): 170-172.
Google Scholar