Personal Identification Using Finger-Knuckle-Print Based on Local Binary Pattern

Article Preview

Abstract:

Over the last ten years, considerable progress has been made on the new hand-based biometric recognition, such as palmprint and hand vein. During this period, it has been proved that Finger-Knuckle-Print (FKP) can be used as a biometric identifier. In this paper, we present an effective FKP identification method based on Local Binary Pattern (LBP), whose idea is to divide the region of interest (ROI) of FKP into a set of sub-image blocks, which can be applied to extract the local features of the FKP. After that, LBP histograms of image blocks in a FKP ROI image are connected together to build the feature vector of the FKP ROI image. In the match stage, histogram intersection distance is applied as the similarity measurement between sample and template. Experimental results conducted on a database of 165 persons (4 fingers per person) show that the proposed method is effective.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

703-706

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Maltoni, D. Maio, A.K. Jain, S. Prabhakar, Handbook of Fingerprint Recognition[M], Springer, (2003).

Google Scholar

[2] N. Ratha, R. Bolle, Automatic Fingerprint Recognition Systems[M], Springer, (2004).

Google Scholar

[3] D. Zhang, W.K. Kong, J. You, M. Wong, Online Palmprint Identification[J], IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 (9): 1041–1050.

DOI: 10.1109/tpami.2003.1227981

Google Scholar

[4] A. Kong, D. Zhang, M. Kamel. A Survey of Palmprint Recognition[J]. Pattern Recognition, 2009, 42(7): 1408-1418.

DOI: 10.1016/j.patcog.2009.01.018

Google Scholar

[5] Y. Ding, D. Zhuang, K. Wang. A Study of Hand Vein Recognition Method[C], IEEE International Conference on Mechatronics and Automation, 2005. IEEE, 2005, 4: 2106-2110.

DOI: 10.1109/icma.2005.1626888

Google Scholar

[6] L. Wang, G. Leedham, D. Siu-Yeung Cho. Minutiae Feature Analysis for Infrared Hand Vein Pattern Biometrics[J]. Pattern Recognition, 2008, 41(3): 920-929.

DOI: 10.1016/j.patcog.2007.07.012

Google Scholar

[7] D.L. Woodard, P.J. Flynn, Finger Surface as a Biometric Identifier[J], Computer Vision and Image Understanding, 2005, 100 (3): 357–384.

DOI: 10.1016/j.cviu.2005.06.003

Google Scholar

[8] A. Kumar, C. Ravikanth, Personal Authentication Using Finger Knuckle Surface[J], IEEE Transactions on Information Forensics and Security, 2009, 4 (1): 98–109.

DOI: 10.1109/tifs.2008.2011089

Google Scholar

[9] L. Zhang, L. Zhang, D. Zhang, H. Zhu, Online Finger–Knuckle-Print Verification for Personal Authentication[J], Pattern Recognition, 2010, 43 (7): 2560–2571.

DOI: 10.1016/j.patcog.2010.01.020

Google Scholar

[10] G. S. Badrinath, A. Nigam, P. Gupta. An Efficient Finger-Knuckle-Print Based Recognition System Fusing Sift and Surf Matching Scores[J]. Information and Communications Security. Springer Berlin Heidelberg, 2011: 374-387.

DOI: 10.1007/978-3-642-25243-3_30

Google Scholar

[11] L. Zhang, L. Zhang, D. Zhang, H. Zhu. Ensemble of Local and Global Information for Finger–Knuckle-Print Recognition[J]. Pattern Recognition, 2011, 44(9): 1990-(1998).

DOI: 10.1016/j.patcog.2010.06.007

Google Scholar

[12] L. Zhang, H. Li. Encoding local image patterns using Riesz transforms: With Applications to Palmprint and Finger-Knuckle-Print Recognition[J]. Image and Vision Computing, 2012, 30(12): 1043-1051.

DOI: 10.1016/j.imavis.2012.09.003

Google Scholar

[13] T. Ojala, M. Pietikainen, T. Maeopaa. Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7), 971–987.

DOI: 10.1109/tpami.2002.1017623

Google Scholar

[14] T. Ojala, M. Pietikainen, D. Harwood. A Comparative Study of Texture Measures with Classification Based on Feature Distributions. Pattern Recognition, 1996, 29(1), 51–59.

DOI: 10.1016/0031-3203(95)00067-4

Google Scholar