Current Research Progress in Non-Classical Fourier Heat Conduction

Article Preview

Abstract:

Classical Fourier law can accurately describe most heat conduction problems. But for ultrafast heat conduction process and micro/nanoscale heat conduction problems, non-classical Fourier (non-Fourier) effect may become dominated. The paper gives a review on the current progress on non-Fourier heat conduction in engineering. It includes basic concept, physical models, thermal relaxation effect, and related experiments. Also introduced are the solution methods of non-Fourier heat conduction equations, including closed-form solution, finite difference method, finite element method, molecular dynamics simulation, variational method, and other hybrid methods. Some challenging issues are discussed at the conclusion of the paper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

187-196

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Landau: Journal of Physics. Vol. 5 (1941) p.71.

Google Scholar

[2] V. Peshkov: Journal of Physics. Vol 8 (1944) p.381.

Google Scholar

[3] P.M. Morse, H. Feschbach: McGraw-Hill. (1953) p.519.

Google Scholar

[4] C. Cattaneo: C. R. Acad. Sci. Vol. 247 (1958) p.431.

Google Scholar

[5] P. Vernotte: C. R. Acad. Sci. Vol. 246 (1958) p.3154.

Google Scholar

[6] D.Y. Tzou: Annual Review of Heat Transfer Ⅳ. Ch. 3 (1992) p.111.

Google Scholar

[7] D.Y. Tzou: Macro to Microscale Heat Transfer: The Lagging Behavior. (1996).

Google Scholar

[8] D.Y. Tzou: ASME J. Heat Transfer. Vol. 117 (1995) p.8.

Google Scholar

[9] S.I. Anismov, B.L. Kapeliovich: Sov. Phys. JETP. Vol. 39 (1974) p.375.

Google Scholar

[10] T.Q. Qiu, C.L. Tien: ASME Journal of Heat Transfer. Vol. 115 (1993) p.835.

Google Scholar

[11] D. Jou, J. Casas-Vazouez, G. Lenbon: Report of the Progress in Physics. Vol. 51 (1988) p.1105.

Google Scholar

[12] M.M. Özisik, D.Y. Tzou: Transactions of ASME. Journal of Heat Transfer. Vol. 116 (1994) p.526.

Google Scholar

[13] V. Sebastian, J.B. Saulnier: Physical Review B. Vol. 54 (1996) p.340.

Google Scholar

[14] A.E. Kronberg, A.G. Benneker: Int. J. Heat and Transfer. Vol. 41 (1998) p.127.

Google Scholar

[15] R.A. Guyer, J.A. Krumhansl: Physics Review. Vol. 148 (1966) p.766.

Google Scholar

[16] Choudhuri, S.K. Roy: J. Therm. Stresses. Vol. 30 (2007) p.231.

Google Scholar

[17] X. Liang, Z. Guo, Y. Xu: Science in China. Vol. 39 (1996) p.855.

Google Scholar

[18] M. Chester: Physical Review Vol. 131 (1963) p. (2013).

Google Scholar

[19] M.J. Maurer: Journal of Applied Physics. Vol. 40 (1969) p.5123.

Google Scholar

[20] H.P. Francis: Journal of Sound and Vibration. Vol. 21 (1972) p.181.

Google Scholar

[21] W.B. Lor, H.S. Chu: Int. J. Heat and Mass Transfer. Vol. 43 (2000) p.653.

Google Scholar

[22] K.C. Liu: Int. J. of Heat and Mass Transfer. Vol. 50 (2007) p.1397.

Google Scholar

[23] Y.G. Lv, X.L. Huai: Chemical Engineering Science. Vol. 61 (2006) p.5717.

Google Scholar

[24] Bjorn Vermeersch, Gilbert De Mey: Analog Integr Circ Sig Process. Vol. 55 (2008) p.197.

Google Scholar

[25] H. Basirat Tabrizi, S. Andarwa: International Communications in Heat and Mass Transfer. Vol. 36 (2009) p.186.

DOI: 10.1016/j.icheatmasstransfer.2008.10.010

Google Scholar

[26] J. Ordonez-Miranda, J.J. Alvarado-Gil: International Journal of Thermal Sciences. Vol. 48 (2009) p. (2053).

Google Scholar

[27] T. Qiu, T. Juhasz: Int. J. Heat Mass Transfer. Vol. 37 (1994) p.2799.

Google Scholar

[28] F.M. Jiang, D.Y. Liu: Journal of Engineering Thermaldynamics. Vol. 22 (2001) p.77 (in Chinese).

Google Scholar

[29] Y.H. Yuan, C.L. Liu: High Power Laser and Particles Beams. Vol. 9 (1997) p.477 (in Chinese).

Google Scholar

[30] X.B. Zhang, Y. X Yuan: Acta Armamentar, Vol. 23 (2002) p.23.

Google Scholar

[31] Q.L. Hao, G. Zhao: Acta Photonica Sinica. Vol. 36 (2007) p.394 (in Chinese).

Google Scholar

[32] K. Mitra, S. Kumar, A. Vedavarz: ASME J. Heat Transfer. Vol. 117 (1995) p.568.

Google Scholar

[33] S. Hosein, G. Mohammad: Thermal Issues in Emerging Technologies. Dec. 17-20 (2008).

Google Scholar

[34] R.X. Cai, N. Zhang: Chinese Science Bulletin. Vol. 43 (1998) No. 13.

Google Scholar

[35] F.M. Jiang: Heat Mass Transfer Vol. 42 (2006) p.1083.

Google Scholar

[36] Evaldiney R. Monteiro, Emanuel N. Macêdo, João N.N. Quaresma, Renato M. Cotta: International Communications in Heat and Mass Transfer. Vol. 36 (2009) p.297.

DOI: 10.1016/j.icheatmasstransfer.2009.01.002

Google Scholar

[37] F.M. Jiang, A.C.M. Sousa: Heat Mass Transfer. Vol. 43 (2007) p.479.

Google Scholar

[38] Q.M. Fan, W.Q. Lu: Int. J. Heat and Mass Transfer. Vol. 45 (2002) p.2815.

Google Scholar

[39] J.I. Ramos: Applied Mathematics and Computation. Vol. 190 (2007) p.722.

Google Scholar

[40] W. Dai, H. Song: International Journal of Numerical Methods for Heat & Fluid Flow. Vol. 16 (2006) No. 6.

Google Scholar

[41] T. Niu, W. Dai: International Journal of Thermal Sciences. Vol. 48 (2009) p.34.

Google Scholar

[42] R. Čiegis: Mathematical Modelling and Analysis. Vol. 14 (2009) p.11.

Google Scholar

[43] S. Roy, A.S. Vasudeva Murthy, Ramesh B. Kudenatti: Applied Numerical Mathematics. Vol. 59 (2009) p.1419.

Google Scholar

[44] C. Yang: Applied Mathematical Modelling. Vol. 33 (2009) p.2907.

Google Scholar

[45] N. YU, S. IMATANI, T. INOUE: Int. J. JSME A. Vol. 47 (2004) p.574.

Google Scholar

[46] J. S. Loh, I.A. Azid: Int. J. Heat and Mass Transfer. Vol. 50 (2007) p.4400.

Google Scholar

[47] S.T. Miller, R.B. Haber: Comput. Methods Appl. Mech. Engrg. Vol. 198 (2008) p.194.

Google Scholar

[48] X.Y. Du: Journal of Liaoning Normal University. Vol. 27 (2004) No. 3 (in Chinese).

Google Scholar

[49] Q. Liu, P. J. H. Xiang: Progress in Natural Science. Vol. 18 (2008) p.999.

Google Scholar

[50] A. Saleh, M. Al-Nimr: Int. J. Heat and Mass Transfer. Vol. 35 (2008) p.204.

Google Scholar

[51] T.M. Chen: Int. J. Heat and Mass Transfer. Vol. 52 (2009) p.4273.

Google Scholar

[52] C.H. Huang, Chien-Yu Lin: Int. J. Numer. Meth. Engng. Vol. 76 (2008) p.108.

Google Scholar

[53] C.Y. Lo, Bo-Yo Chen: Numerical Heat Transfer. Vol. 55 (2009) p.219.

Google Scholar

[54] M. Tsai, G. F. Carey: Numerical Heat Transfer. Vol. 15 (1982) p.309.

Google Scholar

[55] H. T. Chen and J. Y. Lin: Int. J. Heat Mass Transfer. Vol. 36 (1993) p.2891.

Google Scholar

[56] S. Mohammed: Applied Numerical Mathematics. Vol. 59 (2009) p.754.

Google Scholar

[57] M.A. Al Nimr, M Naji: Microscale Thermalphys. Eng. Vol. 4 (2000) p.231.

Google Scholar