[1]
S. Heimbs, Rim release analysis: Impact of aircraft wheel flange fragment on wing flap mechanism, in Proc. 2012 WIT Trans. Built Environ, pp.193-202.
DOI: 10.2495/su120171
Google Scholar
[2]
L. Hou, D. Z. Lin and H. L. Li, Computational Modelling on the Complex Boundary Conditions in the Impact Problem, in Proc. 2011 International Conference on Computer and Network Technology, pp.231-235.
Google Scholar
[3]
S. Boria and G. Forasassi, Honeycomb sandwich material modelling for dynamic simulations of a crash-box for a racing car, in Proc. 2008 10th International Conference on Structures Under Shock and Impact, pp.167-176.
DOI: 10.2495/su080171
Google Scholar
[4]
Heimbs and Sebastian, Virtual testing of sandwich core structures using dynamic finite element simulations, Computational Materials Science, vol. 45, pp.205-216, (2009).
DOI: 10.1016/j.commatsci.2008.09.017
Google Scholar
[5]
L. Hou, H. Li, M. Zhang, W. Wang, D. Lin and L. Qiu, Dual-Scaled Method for the Rheology of Non-Newtonian Boundary Layer and Its High Performance FEM, in Proc. 2012 3rd International Conference on Information Computing and Applications, pp.284-290.
DOI: 10.1007/978-3-642-34062-8_37
Google Scholar
[6]
L. Hou, H. L. Li and D. Z. Lin, The Stochastic Boundary-Layer in theNon-Newtonian Problem, in Proc. 2010 Proceedings of the World Congress on Engineering, pp.1872-1876.
Google Scholar
[7]
L. Hou, H. L. Li and H. Wang, Stcchastic Analysis in the Visco-ElasticImpact Condition, International Review of Chemical Engineering, vol. 2, pp.178-183, (2010).
Google Scholar
[8]
L. Hou and L. Cai, Nonlinear property of the visco-elastic-plastic material in the impact problem, Journal of Shanghai University(English Edition), vol. 13, pp.23-28, (2009).
DOI: 10.1007/s11741-009-0106-3
Google Scholar
[9]
L. Hou and H. R., Nonlinear properties in the Newtonian and Non-Newtonian Equations, Nonlinear analysis, Elsevier Sciences, vol. 30, pp.2497-2505, (1997).
DOI: 10.1016/s0362-546x(96)00226-x
Google Scholar
[10]
L. Hou, P. R. B and W. A. D., Physics of Plasmas, in Proc. 1996 American Institute of Physics, pp.473-481.
Google Scholar
[11]
N. P. Thien and R. I. Tanner, A new constitutive equation derived from network theory, Journal of Non-Newtonian Fluid Mechanics, vol. 2, pp.353-365, (1977).
DOI: 10.1016/0377-0257(77)80021-9
Google Scholar
[12]
L. Hou, M. Zhang and D. Z. Lin, Finite element analysis on the honeycomb structure under the condition of compression and collision, in Proc. 2011 Proceedings of the World Congress on Engineering and Technology, pp.53-56.
Google Scholar
[13]
L. Hou, D. Z. Lin and B. Wang, Computational Modelling on the Contact Interface with Boundary-layer Approach, in Proc. 2011 Proceedings of the World Congress on Engineering, pp.39-44.
Google Scholar
[14]
L. Hou, H. Li, J. Zhang, D. Lin and L. Qiu, Boundary-layer eigen solutions for multi-field coupled equations in the contact interface, Applied Mathematics and Mechanics(English Edition), pp.719-732, (2010).
DOI: 10.1007/s10483-010-1306-z
Google Scholar