[1]
Fangyi Liu, Xiaoling Yu, Zhiyu Han, Yang Wang. Clinical application of ultrasound-guided percutaneous biopsy in mediastinal lesions. Chinese J Med Imaging Tech. 24. 9 (2008) 1459-1461.
Google Scholar
[2]
Yanxia Kang, Helong Zhang. The research progress of tumor heat treatment mechanism. Journal of modern oncology. 16. 3 (2008) 473-475.
Google Scholar
[3]
Haiming Ai, Shuicai Wu, Lei Zhao, Hongjian Gao, Yi Zeng. Key technologies and hot issues in microwave hyperthermia. Journal of clinical rehabilitative tissue engineering research. 13. 4 (2009) 731-734.
Google Scholar
[4]
S. Labonte, H. Ali, L. Roy, Monopoles for microwave catheter ablation of heart tissue, IEEE MTT SYMP. Dig. 1 (1995) 303-306.
DOI: 10.1109/mwsym.1995.406046
Google Scholar
[5]
Langberg J, Chin M. Ablation of atrioventricular junction using radiofrequency energy using a new electrode catheter. Amer. J. Cardiol. 67. 2 (1991) 142-147.
DOI: 10.1016/0002-9149(91)90436-o
Google Scholar
[6]
Z. Gu, M. Rappaport, P. J. Wang, B. A. VanderBrink. Development and experimental verification of the wide-aperture catheter-based microwave cardiac ablation antenna. IEEE Trans microwave theory tech. 48. 11 (2000) 1892-(1900).
DOI: 10.1109/22.883868
Google Scholar
[7]
H. H. Pennes. Analysis of tissue and arterial blood temperatures in the resting human forearm. Applied Physiology. 1. 2 (1948) 93-122.
DOI: 10.1152/jappl.1948.1.2.93
Google Scholar
[8]
Youjun Liu, Xiaoyong Yang, Qun Nan, Jiangyan Xiao, Liang Li. Phantom experimental study on microwave ablation with a water-cooled antenna. Int J Hyperthermia. 23. 4 (2007) 381-386.
DOI: 10.1080/02656730701397841
Google Scholar
[9]
M. Chaichanyut. Microwave Ablation with Cap-Choke Antenna: Result in Computer Simulation. 7th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology. Chiang Mai, Thailand. 679-682. (2010).
Google Scholar
[10]
M. Cavagnaro, C. Amabile, P. Bernardi, S. Pisa, N. Tosoratti. A Minimally Invasive Antenna for Microwave Ablation Therapies: Design, Performances, and Experimental Assessment. IEEE Transactions on Biomedical Engineering. 58. 4 (2011) 949-959.
DOI: 10.1109/tbme.2010.2099657
Google Scholar
[11]
C. Marta, A. Claudio, B. Paolo, et al. J. W. Valvano, J. R. Cochran, K. R. Diller. Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors. Int J Thermophys. 6. 3 (1985) 301-311.
DOI: 10.1007/bf00522151
Google Scholar
[12]
O. I. Craciunescu, T. V. Samulski, J. R. MacFall, S. T. Clegg. Perturbations in hyperthermia temperature distributions associated with counter-current flow numerical simulations and empirical verification. IEEE Trans on BME. 47. 4 (2000) 435-443.
DOI: 10.1109/10.828143
Google Scholar
[13]
Lei Dong, Jianming Lu, Minghuan Shao, Ping Ye, Jidong Jiang. The dynamic change of the flow peak velocity and the resistance index of hepatic artery in patients of liver cirrhosis with hepatic carcinoma. Shanghai Medical Imaging. 13. 4 (2004).
Google Scholar
[14]
Jianshe Xue, Xiaobo Guo, Ying Liu, Yuyu Bao. Hemodynamic changes and clinical value of thyroid artery and hepatic artery in hyperthyroidism. Chin J Diffc and Comp Cas. 11. 3 (2012) 197-199.
Google Scholar
[15]
Jing Liu, Cuncheng Wang. Bio-heat transfer. Beijing: Science Press. 131-133. (1997).
Google Scholar
[16]
J.C. Chato. Fundamentals of Bioheat Transfer, Springer-Verlag. (1989).
Google Scholar
[17]
Yunqiu. Qian. Practical Handbook of Diagnostic Ultrasound. Beijing: People's Military Medical Press. (2003).
Google Scholar