First-Principles Study on the Elastic and Electronic Properties of 2H-CuGaO2

Article Preview

Abstract:

The structure, elastic and electronic properties of 2H-CuGaO2 are calculated using the plane-wave ultrasoft pseudopotential technique based on the first-principles density functional theory. The calculated equilibrium lattice parameters is in good agreement with experimental and reported values. The elastic coefficients, bulk, shear and Youngs modulus, Poissons ratio and elastic anisotropy ratio of 2H-CuGaO2 were calculated. The electronic properties of 2H-CuGaO2 have been calculated and the results show that 2H-CuGaO2 has an indirect band gap.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-7

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. G. Zheng, K. Taniguchi, A. Takahashi, Y. Liu, C. N. Xu: Appl. Phys. Lett. Vol. 85 (2004), p.1728.

Google Scholar

[2] J. Cai, H. Gong: J. Appl. Phys. Vol. 98 (2005), p.033707.

Google Scholar

[3] A.N. Banerjee, S. Kundoo, K.K. Chattopadhyay: Thin Solid Films. Vol. 440 (2003), p.5.

Google Scholar

[4] K. Koumoto, H. Koduka, W. -S. Seo: J. Mater. Chem. Vol. 11 (2001), p.251.

Google Scholar

[5] A.N. Banerjee, R. Maity, P.K. Ghosh, K.K. Chattopadhyay: Thin Solid Films. Vol. 474 (2005), p.261.

Google Scholar

[6] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono: Nature. Vol. 389 (1997), p.939.

DOI: 10.1038/40087

Google Scholar

[7] R. Bruce Gall, Nathan Ashmore, Meagen A. Marquardt, Xiaoli Tan, David P. Cann: J. Alloys Compd. Vol. 391 (2005), p.262.

Google Scholar

[8] J. Tate, H. L. Ju, J. C. Moon, A. Zakutayev, A. P. Richard, J. Russell, D. H. McIntyre: Phys. Rev. B. Vol. 80 (2009), p.165206.

Google Scholar

[9] T. Mine, H. Yanagi, K. Nomura, T. Kamiya, M. Hirano, H. Hosono: Thin Solid Films. Vol. 516 (2008), p.5790.

DOI: 10.1016/j.tsf.2007.10.072

Google Scholar

[10] L. Makhova, D. Wett1, M. Lorenz, I. Konovalov: phys. stat. sol. (a) Vol. 203 (2006), p.2861.

Google Scholar

[11] K. Ueda, T. Hase, H. Yanagi, H. Kawazoe, H. Hosono, H. Ohta, M. Orita, and M. Hirano: J. Appl. Phys. 89 (2001), p.1790.

DOI: 10.1063/1.1337587

Google Scholar

[12] J. Pellicer-Porres, A. Segura, Ch. Ferrer-Roca, D. Martínez-García, J. A. Sans, E. Martínez, J. P. Itié, A. Polian, F. Baudelet, A. Munõz, P. Rodríguez-Hernández, P. Munsch: PHYSICAL REVIEW B. Vol. 69 (2004), p.024109.

DOI: 10.1103/physrevb.69.024109

Google Scholar

[13] Zhi-Ji FANG, Cheng FANG, Li-Jie SHI: Chinese Phys. Lett. Vol. 25 (2008), p.2997.

Google Scholar

[14] K. G. Godinho, B. J. Morgan, J. P. Allen, D. O. Scanlon, G. W. Watson: J. Phys.: Condens. Matter. Vol. 23(2011), p.334201.

Google Scholar

[15] V. Jayalakshmi, R. Murugan, B. Palanivel: J. Alloys Compd. Vol. 388(2005), p.19.

Google Scholar

[16] A. Buljan, P. Alemany, E. Ruiz: J. Phys. Chem. B. Vol. 103 (1999), p.8060.

Google Scholar

[17] M. Born, K. Huang: Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford 1988).

Google Scholar

[18] W. Voigt: Lehrbuch der Kristallphysik (Teubner, Leipzig 1928).

Google Scholar

[19] A. Reuss: Z. Angew. Math. Mech. Vol. 9 (1929), p.49.

Google Scholar

[20] R. Hill: Proc. Phys. Soc. A. Vol. 65 (1952), p.349.

Google Scholar

[21] H. S. Chen: Anisotropy of Elasticity about Metal (Metallurgy Industry Press, Beijing 1996).

Google Scholar

[22] B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Sticht, P.C. Schmidt: Intermetallics. Vol. 11 (2003), p.23.

Google Scholar

[23] S. F. Pugh: Philos. Mag. Vol. 45 (1954), p.833.

Google Scholar

[24] X. H. Deng, W. Lu, Y. M. Hu, H. S. Gu: Physica B. Vol. 404 (2009), p.1218.

Google Scholar

[25] X. Nie, S. H. Wei, and S. B. Zhang: Phys. Rev. Lett. Vol. 88(2002), p.066405.

Google Scholar