Simulation of Thermal and Mechanical Response of (Zr,W)B2 Ceramic after Oxidation

Article Preview

Abstract:

This study relates to a micromechanics based finite element model of the effect of oxidation on heat transfer and mechanical behavior of a (Zr,W)B2 ceramic at high temperature. An adaptive remeshing technique is employed in both heat transfer and thermal stress analysis models. A global-local modeling technique is used to combine finite elements with infinite elements for thermal stress analysis. Temperature and thermal stress distributions in the ceramic and the oxides are presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

40-44

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.M. Opeka, I.G. Talmy, J.A. Zaykoski, Oxidation-based materials selection for 2000°C + hypersonic aerosurfaces: theoretical considerations and historical experience, Journal of Materials Science. 39 (2004) 5887-5904.

DOI: 10.1023/b:jmsc.0000041686.21788.77

Google Scholar

[2] W.G. Fahrenholtz, G.E. Hilmas, A.L. Chamberlain, J.W. Zimmermann, Processing and characterization of ZrB2-basedultra-high temperature monolithic and fibrousmonolithic ceramics, Journal of Materials Science. 39(2004) 5951-5957.

DOI: 10.1023/b:jmsc.0000041691.41116.bf

Google Scholar

[3] W.G. Fahrenholtz, The ZrB2 volatility diagram, J. Am. Ceram. Soc. 88 (2005) 3509-3512.

Google Scholar

[4] T.A. Parthasarathy, R.A. Rapp, M. Opeka, R.J. Kerans, A model for the oxidation of ZrB2, HfB2 and TiB2, ActaMaterialia. 55 (2007) 5999-6010.

DOI: 10.1016/j.actamat.2007.07.027

Google Scholar

[5] T.A. Parthasarathy, R.A. Rapp, M. Opeka, R.J. Kerans, A model for transitions in oxidation regimes of ZrB2, Materials Science Forum. 595-598 (2008) 823-832.

DOI: 10.4028/www.scientific.net/msf.595-598.823

Google Scholar

[6] T.A. Parthasarathy, R.A. Rapp, M. Opeka, R.J. Kerans, Effects of phase change and oxygen permeability on oxide scales on oxidation kinetics of ZrB2 and HfB2, Journal of the American Ceramic Society. 95(2009) 1079-1086.

DOI: 10.1111/j.1551-2916.2009.03031.x

Google Scholar

[7] W. G, Fahrenholtz, Thermodynamic analysis of ZrB2–SiC oxidation: formation of a SiC-depleted region, Journal of the American Ceramic Society. 90(1) (2007) 143-148.

DOI: 10.1111/j.1551-2916.2006.01329.x

Google Scholar

[8] C. M., Carney, P., Mogilevsky T.A., Parthasarathy, Oxidation behavior of zirconium diboride silicon carbide produced by the spark plasma sintering method, Journal of the American Ceramic Society. 92(9) (2009) 2046-(2052).

DOI: 10.1111/j.1551-2916.2009.03134.x

Google Scholar

[9] S.C. Zhang, G.E. Hilmas, W.G. Fahrenholtz, Improved oxidation resistance of zirconium diboride by tungsten carbide additions, J. Am. Ceram. Soc. 91(11) (2008) 3530–3535.

DOI: 10.1111/j.1551-2916.2008.02713.x

Google Scholar

[10] S.C. Zhang, G.E. Hilmas, W.G. Fahrenholtz, Oxidation of zirconium diboride with tungsten carbide additions, J. Am. Ceram. Soc. 94(4) (2011) 1198–1205.

DOI: 10.1111/j.1551-2916.2010.04216.x

Google Scholar

[11] Material Property Database (MPDB), " JAHM Software, Inc., URL: http: /www. jahm. com, [cited 18 March 2011].

Google Scholar

[12] J. Wei, L.R. Dharani, K. Chandrashekhara, G.E. Hilmas, and W.G. Fahrenholtz, Modeling of oxidation effects on heat transfer behavior of ZrB2 and ZrB2-SiC ceramics at high temperature, 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 23 - 26 April 2012, Honolulu, Hawaii, AIAA 2012-(2000).

DOI: 10.2514/6.2012-2000

Google Scholar

[13] I., Barin, Thermochemical Data of Pure Substances, 3rd Edition, New York, VCH, (1995).

Google Scholar

[14] J.A. Perri, E. Banks, B. Post, Study of phase transitions in WO3 with a hightemperature X-Ray diffractometer, J. Appl. Phys. 28(1957) 1272.

Google Scholar

[15] H. Wang, Y. Xu, M. Goto, Y. Tanaka, M. Yamazaki, A. Kasahara, M. Tosa, Thermal conductivity measurement of tungsten oxide nanoscale thin films, Materials Transactions. 47(8) (2006) 1894 -1897.

DOI: 10.2320/matertrans.47.1894

Google Scholar

[16] F.C. Cheong, B. Varghese, Y. Zhu, E.P.S. Tan, L. Dai, V.B.C. Tan, C.T. Lim, C.H. Sow, WO3-x nanorods synthesized on a thermal hot plate, J. Phys. Chem. C. 111(2007) 17193-17199.

DOI: 10.1021/jp074569z

Google Scholar

[17] R.M. Christensen, Mechanics of Composite Materials, HihnEiley& Sons, New York, (1979).

Google Scholar