[1]
M.M. Opeka, I.G. Talmy, J.A. Zaykoski, Oxidation-based materials selection for 2000°C + hypersonic aerosurfaces: theoretical considerations and historical experience, Journal of Materials Science. 39 (2004) 5887-5904.
DOI: 10.1023/b:jmsc.0000041686.21788.77
Google Scholar
[2]
W.G. Fahrenholtz, G.E. Hilmas, A.L. Chamberlain, J.W. Zimmermann, Processing and characterization of ZrB2-basedultra-high temperature monolithic and fibrousmonolithic ceramics, Journal of Materials Science. 39(2004) 5951-5957.
DOI: 10.1023/b:jmsc.0000041691.41116.bf
Google Scholar
[3]
W.G. Fahrenholtz, The ZrB2 volatility diagram, J. Am. Ceram. Soc. 88 (2005) 3509-3512.
Google Scholar
[4]
T.A. Parthasarathy, R.A. Rapp, M. Opeka, R.J. Kerans, A model for the oxidation of ZrB2, HfB2 and TiB2, ActaMaterialia. 55 (2007) 5999-6010.
DOI: 10.1016/j.actamat.2007.07.027
Google Scholar
[5]
T.A. Parthasarathy, R.A. Rapp, M. Opeka, R.J. Kerans, A model for transitions in oxidation regimes of ZrB2, Materials Science Forum. 595-598 (2008) 823-832.
DOI: 10.4028/www.scientific.net/msf.595-598.823
Google Scholar
[6]
T.A. Parthasarathy, R.A. Rapp, M. Opeka, R.J. Kerans, Effects of phase change and oxygen permeability on oxide scales on oxidation kinetics of ZrB2 and HfB2, Journal of the American Ceramic Society. 95(2009) 1079-1086.
DOI: 10.1111/j.1551-2916.2009.03031.x
Google Scholar
[7]
W. G, Fahrenholtz, Thermodynamic analysis of ZrB2–SiC oxidation: formation of a SiC-depleted region, Journal of the American Ceramic Society. 90(1) (2007) 143-148.
DOI: 10.1111/j.1551-2916.2006.01329.x
Google Scholar
[8]
C. M., Carney, P., Mogilevsky T.A., Parthasarathy, Oxidation behavior of zirconium diboride silicon carbide produced by the spark plasma sintering method, Journal of the American Ceramic Society. 92(9) (2009) 2046-(2052).
DOI: 10.1111/j.1551-2916.2009.03134.x
Google Scholar
[9]
S.C. Zhang, G.E. Hilmas, W.G. Fahrenholtz, Improved oxidation resistance of zirconium diboride by tungsten carbide additions, J. Am. Ceram. Soc. 91(11) (2008) 3530–3535.
DOI: 10.1111/j.1551-2916.2008.02713.x
Google Scholar
[10]
S.C. Zhang, G.E. Hilmas, W.G. Fahrenholtz, Oxidation of zirconium diboride with tungsten carbide additions, J. Am. Ceram. Soc. 94(4) (2011) 1198–1205.
DOI: 10.1111/j.1551-2916.2010.04216.x
Google Scholar
[11]
Material Property Database (MPDB), " JAHM Software, Inc., URL: http: /www. jahm. com, [cited 18 March 2011].
Google Scholar
[12]
J. Wei, L.R. Dharani, K. Chandrashekhara, G.E. Hilmas, and W.G. Fahrenholtz, Modeling of oxidation effects on heat transfer behavior of ZrB2 and ZrB2-SiC ceramics at high temperature, 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 23 - 26 April 2012, Honolulu, Hawaii, AIAA 2012-(2000).
DOI: 10.2514/6.2012-2000
Google Scholar
[13]
I., Barin, Thermochemical Data of Pure Substances, 3rd Edition, New York, VCH, (1995).
Google Scholar
[14]
J.A. Perri, E. Banks, B. Post, Study of phase transitions in WO3 with a hightemperature X-Ray diffractometer, J. Appl. Phys. 28(1957) 1272.
Google Scholar
[15]
H. Wang, Y. Xu, M. Goto, Y. Tanaka, M. Yamazaki, A. Kasahara, M. Tosa, Thermal conductivity measurement of tungsten oxide nanoscale thin films, Materials Transactions. 47(8) (2006) 1894 -1897.
DOI: 10.2320/matertrans.47.1894
Google Scholar
[16]
F.C. Cheong, B. Varghese, Y. Zhu, E.P.S. Tan, L. Dai, V.B.C. Tan, C.T. Lim, C.H. Sow, WO3-x nanorods synthesized on a thermal hot plate, J. Phys. Chem. C. 111(2007) 17193-17199.
DOI: 10.1021/jp074569z
Google Scholar
[17]
R.M. Christensen, Mechanics of Composite Materials, HihnEiley& Sons, New York, (1979).
Google Scholar