[1]
H-K. Lin, H-A. Cheng, C-Y. Lee, H-T. Chiu, Chemical vapor deposition of TiSi nano wires on C54 TiSi2 thin film: an amorphous titanium silicide interlayer assisted nanowire growth, Chem. Mater. 21 (2009) 5388-5396.
DOI: 10.1021/cm901726s
Google Scholar
[2]
H. -K. Lin, Y. -F. Tzeng, C. -H. Wang, N. -H. Tai, L-N. Lin, C. -Y. Lee, H. -T. Chiu, TisSi3 nanowire and its field emission property, Chem. Mater. 20 (2008)2429-2431.
DOI: 10.1021/cm800079c
Google Scholar
[3]
Schmitt AL, Higgins JM, Szczech JR, Jin S, Synthesis and applications of metal silicide nanowires. J. Chem. Mater., 20 (2010) 223-235.
DOI: 10.1039/b910968d
Google Scholar
[4]
Levine, Andrew; Yuan, Guangbi; Xie, Jin; Wang, Dunwei, Preparations and Energetic Applications of Si Nanowires, Science of Advanced Materials, 2(11) (2010) 463-473.
DOI: 10.1166/sam.2010.1129
Google Scholar
[5]
R. Pretorius, Prediction of silicide formation and stability using heats of formation. Thin solid films. 290-291 (1996) 477-484.
DOI: 10.1016/s0040-6090(96)09022-0
Google Scholar
[6]
J. Du, P. Du, M. Xu, P. Hao, Y. Huang, G. Han, C. Song, W. Weng, J. Wang, G. Shen, Nucleation and growth of TiSiz thin films deposited on glass by atmospheric pressure chemical vapor deposition, J. Appl. Phys. 101 (2007) 033539.
DOI: 10.1063/1.2472274
Google Scholar
[7]
M.S. Alessandrino, M.G. Grimaldi and F. La Via, C49-C54 phase transition in nanometric titanium disilicide nanograins. Microelectronic Engineering, 64 (2002) 189-196.
DOI: 10.1016/s0167-9317(02)00786-4
Google Scholar
[8]
D. Vojtěch, P. Novák, P. Macháč, M. Morťaniková, K. Jurek, Surface protection of titanium by Ti5Si3 silicide layer prepared by combination of vapour phase siliconizing and heat treatment. Journal of Alloys and Compounds, 464 (2008) 179-184.
DOI: 10.1016/j.jallcom.2007.10.020
Google Scholar
[9]
J. Du, Z Q Xiao, B H Li, Q Wu, J Liu, Research progress of Ti5Si3, Journal of Nanchang University (Engineering & Technology Edition), 35 (2013) 12-16 (in Chinese).
Google Scholar
[10]
B. Xiang, Q. X. Wana, Z. Wana, X. Z. Zhana, L. Q. Liu, J. Xu, and D. P. Yu, Synthesis and field emission properties of TiSi2 nanowires. Appl. Phys. Lett. 86 (2005) 243103.
DOI: 10.1063/1.1948515
Google Scholar
[11]
S. Zhou and D. W. Wang. Unique Lithiation and Delithiation Processes of Nanostructured Metal Silicides. ACS Nano, 4(11) (2010) 7014-7020.
DOI: 10.1021/nn102194w
Google Scholar
[12]
Fonash, S. J., Shan, Y. H., Peng, C. Y., Kalkan, A. K., Cuiffi, J. D., Hayes, D., Butterfoss, P. Nam, W. J. Controlled nanowire growth in permanent, integrated nano-templates and methods of fabricating sensor and transducer structures. US7238594 (2007).
Google Scholar
[13]
S. Zhou, X. H. Liu and D. W. Wang, Si/TiSi2 Heteronanostructures as High-Capacity Anode Material for Li Ion Batteries, Nano Lett., 10(3) (2010) 860-863.
DOI: 10.1021/nl903345f
Google Scholar
[14]
P E Allain, X Le Roux, F Parrain and A Bosseboeuf. Large initial compressive stress in top-down fabricated silicon nanowires evidenced by static buckling, J. Micromech. Microeng. 23 (2013) 015014.
DOI: 10.1088/0960-1317/23/1/015014
Google Scholar
[15]
Michael E. Reimer, Gabriele Bulgarini, Nika Akopian, Moïra Hocevar, Maaike Bouwes Bavinck, Marcel A. Verheijen, Erik P.A.M. Bakkers, Leo P. Kouwenhoven & Val Zwiller, Bright single-photon sources in bottom-up tailored nanowires, Nature communications Dol: 10. 1038/ncomms1746.
DOI: 10.1038/ncomms1746
Google Scholar
[16]
Jang. Moongyu, Park. Youngsam, Hyun. Younghoon, Jun. Myungsim, Choi. Sung-Jin, Zyung. Taehyung, Kim. Jong-Dae. Top-Down Processed Silicon Nanowires for Thermoelectric Applications. Journal of Nanoscience and Nanotechnology. 12(3) (2012).
DOI: 10.1109/nano.2010.5697867
Google Scholar
[17]
Z. Ren, P. Hao, J. Du, G. Han, W. Weng, Ning Ma, P. Du, Self-assembly of TiSi nanowires on TiSi2 thin films by APCVD, J. Alloys Compd. 509 (2011)7519-7524.
DOI: 10.1016/j.jallcom.2011.04.108
Google Scholar
[18]
L. Yu, Y. Lv, X. Zhang, H. Wang, Application of in situ chloride-generated route to Ti5Si3 nanowires from and on Si substrate, Materials letters. 74 (2012)46-49.
DOI: 10.1016/j.matlet.2012.01.053
Google Scholar
[19]
J. Du, P. Du, P. Hao, Y. Huang, Z. Ren, W. Weng, G. Han, G. Zhao, Self-induced preparation of TiSi nanopins by chemical vapor deposition, Nanotechnology. 18 (2007) 345605.
DOI: 10.1088/0957-4484/18/34/345605
Google Scholar
[20]
J. Du, P. Du, P. Hao, Y. Huang, Z. Ren, G. Han, W. Weng, G. Zhao, Growth mechanism of TiSi nanopins on Ti5Si3 by atmospheric pressure chemical vapor deposition, J. Phys. Chem., C, 111 (2007) 10814-10817.
DOI: 10.1021/jp071019s
Google Scholar
[21]
J. Du, Z. Ren, K. Tao, A. Hu, P. Hao, Y. Huang, G. Zhao, W. Weng, G. Han, P. Du, Selfinduced preparation of assembled shrubbery TiSi nanowires by chemical vapor deposition, Crystal Growth&Design 8 (2008) 3543-3548.
DOI: 10.1021/cg7008545
Google Scholar
[22]
L. Yu, Y. Lv, X. Zhang, H. Wang. Application of in situ chloride-generated route to Ti5Si3 nanowires from and on Si substrate. Materials letters. 74 (2012) 46-49.
DOI: 10.1016/j.matlet.2012.01.053
Google Scholar
[23]
Xiao Tong and Robert A. Wolkow, Scanning tunneling microscopy characterization of low-profile crystalline TiSi2 microelectrodes on a Si (111) surface, APPLIED PHYSICS LETTERS. 86 (2005) 203101.
DOI: 10.1063/1.1922572
Google Scholar
[24]
TGI Ling, L Montelius, Metal silicides as a novel electrode material in electrochemical sensors, Sensors and Actuators B-Chemical 70(1-3) (2000) 83-86.
DOI: 10.1016/s0925-4005(00)00563-3
Google Scholar
[25]
P. A. Bennett, B. Ashcroft, Z. He and R. M. Tromp, Growth Dynamics of Titanium Silicide Nanowires Observed with Low-energy Electron Microscopy, J. Vac. Sci. Technol. B, 20(6) (2002) 2500-2504.
DOI: 10.1116/1.1525006
Google Scholar
[26]
Gong Xiong, Zhang Guilan, Tang Guoqing, Chen Wenju, Yang Hongxiu, Research Progress of Nanocrystalline Materials in Chinese, [J]. Progress in Chemistry, 8 (1996) 231-239.
Google Scholar