Genetically Engineered Saccharomyces cerevisiae Strain that Can Ultilize Both Xylose and Glucose for Fermentation

Article Preview

Abstract:

The primary problem in producing fuel ethanol through microorganism fermentation with lignocellulose is the strain. We constructed a URA3-directed low copy integration-expression plasmid pZMYBX1 and rDNA-directed high copy integration-expression plasmid pZMYX2. Using the lithium acetate transformation method, we co-transformed the linearized plasmid pZMYBX1 (StuI) and pZMYX2 (HpaI) into the S. cerevisiae cells. Ultimately, we obtain three recombinants: HDY-ZMYWBG1, HDY-ZMYWBG2 and HDY-ZMYWBG3. The ethanol yield for HDY-ZMYWBG1 and HDY-ZMYWBG3 are 0.368 g/g and 0.365 g/g, respectively, which are higher than the 0.330 g/g yield for W5. This findings show that the xylose metabolic pathway could be introduced into the S. cerevisiae to produce an alternative strain for the production of biological ethanol from lignocellulose substrate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1637-1643

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. David and P. Marcia: Energies Vol. 1(1) (2008), p.35.

Google Scholar

[2] G.O. Beng and R.L. Kevin: Int J. Mol. Sci Vol. 10 (2009), p.385.

Google Scholar

[3] R. Lucas: Energies Vol. 2(1) (2009), p.48.

Google Scholar

[4] H. Jason, N. Erik, T. David, P. Stephen and T. Douglas: PNAS (2006), p.11206.

Google Scholar

[5] P. David, M. Alison, A.T. Megan, K. Marissa, S.P. Gillian, M. Robert, K. Joanna and K. Tim: Energies Vol. 1(2) (2008), p.41.

Google Scholar

[6] T. Theocharis and B. Dimitris: Energies Vol. 4(10) (2011), p.1601.

Google Scholar

[7] P.W. Owen and S. Ajay: Adv. Appl. Microbiol Vol. 51(2002), p.53.

Google Scholar

[8] P.C. Badger, in: Ethanol from cellulose: a general review, Trends in New Crops and New Uses Alexandria, ASHS, Arlington, VA (2002), in press.

Google Scholar

[9] R.L. Lee, J. Paul, Weimer, H. Willem, Z. van, S. Isak and Pretorius: Microbiol. Mol. Biol. Rev Vol. 66(3) (2002), p.506.

Google Scholar

[10] C.E. Wyman: Trends. Biotechnol Vol. 25 (2007), p.153.

Google Scholar

[11] T.W. Jeffries and Y.S. Jin: Appl. Microbiol. Biotechnol Vol. 63(2004), p.495.

Google Scholar

[12] W. Seiya, A.S. Ahmed, P.P. Seung, A. Narayana, K. Tsutomu and M. Keisuke: J. Biotechnol Vol. 130(2007), p.316.

Google Scholar

[13] R.V. Rooyen, B. Hahn-Hägerdal, D.C. La Grange and W.H.V. Zyl: J. Biotechnol Vol. 120(3) (2005), p.284.

Google Scholar

[14] W.Y.H. Nancy, C. Zhengdao, P. Adam and Brainard: Appl. Environ. Microbiol Vol. 64(1998), p.1852.

Google Scholar

[15] P. Kötter and M. Ciriacy: Appl. Microbiol. Biotechnol Vol. 38(6) (1993), p.776.

Google Scholar

[16] T. Manee, N. Noriyuki, S. Tatsuji and Y. Toshiomi: J. Ferment. Bioeng Vol. 75(2) (1993), p.83.

Google Scholar

[17] E. Anna, C. Camilla, C.F. Wahlbom and B. Hahn-Hägerdal: Appl. Environ. Microbiol Vol. 66(8) (2000), p.3381.

Google Scholar

[18] J. Björn, C. Camilla, H. Timothy, Bärbel and Hahn-H: Appl. Environ. Microbiol Vol. 67(9) (2001), p.4249.

Google Scholar

[19] M.H. Toivari, A. Aristidou, L. Ruohonen and M. Penttilä: Eng Vol. 3(3) (2001), p.236.

Google Scholar

[20] S. Joseph and W.R. David, in: Molecular Cloning: A Laboratory Munuul. 3rd ed, Cold Spring Harbor laboratory, New York, NY (2001), in press.

Google Scholar