Study on the Pyrolysis Characteristics and Mechanism of KCl-Pretreated Sunflower Stalk

Article Preview

Abstract:

To study the influence of KCl pretreating on the pyrolysis kinetics of sunflower stalk, the pyrolysis of sunflower stalk pretreated by different concentration KCl solutions were performed by nonisothermal thermogravimetric analysis (TGA) at five different heating rates. The Ozawa and Kissinger methods were employed to calculate the activation energy and the Šatava method was used to obtain the kinetic mechanism model. The results showed that the pyrolysis process of the sunflower stalk pretreated by 3% and 10% KCl solution can be separated into four stages (water loss, depolymerization and vitrification, thermal decomposition, and carbonization). With the heating rate increasing, the main pyrolysis zone of the TG (thermogravimetric) and DTG curves move to the higher temperature direction, and the maximum pyrolysis rate and its corresponding temperature increase too. Adding a small amount of metal salts is conducive to the formation of volatile, and a certain amount of metal salts can improve the charcoal yield. More KCl additive makes the lower activation energy value, and the obtained activation energy value increases with the heating rate increasing. By means of the Šatava method, the kinetic mechanism model for the pyrolysis of KCl-pretreated sunflower stalk is Zhuralev-Lesakin-Tempelman equation, which is three-dimensional diffusion.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1665-1674

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Han, QH. Wang, Q. Ma, CHJ Yu et al. Influence of CaO additives on wheat-straw pyrolysis as determined by TG-FTIR analysis[J]. Journal of Analytical and Applied Pyrolysis, 2010, 88: 199-266.

DOI: 10.1016/j.jaap.2010.04.007

Google Scholar

[2] S. Kent Hoekman. Biofuels in the U.S. – Challenges and Opportunities[J]. Renewable Energy, 2009, 34: 14-22.

Google Scholar

[3] D. Fabbri , A. Adamiano ,C. Torri. GC-MS determination of polycyclic aromatic hydrocarbons evolved from pyrolysis of biomass[J]. Anal Bioanal Chem, 2010, 397: 309-317.

DOI: 10.1007/s00216-010-3563-5

Google Scholar

[4] A. Dufour, B. Ouartassi, R. Bounaceur, AndréZoulalian. Modelling intra-particle phenomena of biomass pyrolysis[J]. Chemical Engineering Research and Design, (2011).

DOI: 10.1016/j.cherd.2011.01.005

Google Scholar

[5] A. Mousa,G. Heinrich. The Effect of Microwave Irradiation on the Physical and Morpho- logical Behavior of Olive Husk Biomass and its Application in XNBR Vulcanizates[J]. Waste Biomass Valor, (2012).

DOI: 10.1007/s12649-011-9106-2

Google Scholar

[6] Chen DY., Liu RH, Cai JM. Pyrolysis Kinetics of Pre-treated Sweet Sorghum Bagasse[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(2): 188-194. In Chinese.

Google Scholar

[7] S. Munir, S.S. Daood, W. Nimmo, et al. Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres[J]. Bioresource Technology, 2009, 100: 1413-1418.

DOI: 10.1016/j.biortech.2008.07.065

Google Scholar

[8] S. Xiu, H. K. Rojanala,A. Shahbazi. Pyrolysis and combustion characteristics of Bio-oil from swine manure[J]. J Therm Anal Calorim, 2012, 107: 823-829.

DOI: 10.1007/s10973-011-1604-8

Google Scholar

[9] JM. Cai, LQ. Ji. Pattern search method for determination of DAEM kinetic parameters from nonisothermal TGA data of biomass[J]. Journal of Mathematical Chemistry, 2007, 42(3): 547-553.

DOI: 10.1007/s10910-006-9130-9

Google Scholar

[10] CHEN DY., LIU RH. Study on the Kinetics of Sunflower Stalk Pyrolysis[J]. Journal of Shenyang Agricultural University, 2007, 38(1): 94-98. In Chinese.

Google Scholar

[11] LIAO YF., WANG SHR., LUO ZHY., et al. Research on cellulose pyrolysis kinetics[J]. Journal of Zhejiang University, 2002, 36(2), 172-176, 189. In Chinese.

Google Scholar

[12] G. Varhegyi, M.J. Antal, T. Szekely, et al. Kinetics of the thermal decomposition of cellulose, hemicellulose[J]. and sugarcane bagasse. Energy & Fuels, 1989, 3: 329–335.

DOI: 10.1021/ef00015a012

Google Scholar

[13] M.J. Antal, G. Varhegyi. Cellulose pyrolysis kinetics: the current state of knowledge[J]. Industrial & Engineering Chemistry Research, 1995, 34: 703-717.

DOI: 10.1021/ie00042a001

Google Scholar

[14] P. Luangkiattikhun, C. Tangsathitkulchai and M. Tangsathitkulchai. Non-isothermal thermogravimetric analysis of oil-palm solid wastes[J]. Bioresource Technology, 2008, 99: 986-997.

DOI: 10.1016/j.biortech.2007.03.001

Google Scholar

[15] Song CHC. and Hu HQ. CATALYTIC PYROLYSIS AND KINETICS OF AGRICULTURAL STALKS AND THRIR MAIN COMPONENTS[J]. Coal Conversion, 2003, 26(3): 91-97. In Chinese.

Google Scholar

[16] Piroska Szabó, Gábor várhegyi, F. Till, et al. Thermogravimetric /mass spectro-metric characterization of two energy crops, Arundo donax and Miscanthus sinensis[J]. Journal of Analytical and Applied Pyrolysis, 1996, 36: 179-190.

DOI: 10.1016/0165-2370(96)00931-x

Google Scholar

[17] Valérie Leroy, Dominique Cancellieri, Eric Leonib and Jean-Louis Rossi. Kinetic study of forest fuels by TGA: Model-free kinetic approach for theprediction of phenomena[J]. Thermochimica Acta, 2010, 497: 1-6.

DOI: 10.1016/j.tca.2009.08.001

Google Scholar

[18] Hu RZ., Shi QZH. Thermal analysis kinetics[M]. Bingjing: Science Press, 2001. In Chinese.

Google Scholar

[19] Ozawa T. A new method of analyzing thermogravimatric data[J]. Bulletin of the chemical society of Japan, 1965, 38(11): 1881-1886.

DOI: 10.1246/bcsj.38.1881

Google Scholar

[20] Sergey Vyazovkina , Alan K. Burnham, José M. Criado, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520: 1-19.

DOI: 10.1016/j.tca.2011.03.034

Google Scholar

[21] E. Biagini, A. Fantei, L. Tognotti. Effect of the heating rate on the devolatilization of biomass residues[J]. Thermochimica Acta, 2008, 472: 55-63.

DOI: 10.1016/j.tca.2008.03.015

Google Scholar

[22] Akinwale O. Aboyade, Thomas J. Hugo, Marion Carrier, et al. Non-isothermal kinetic analysis of the devolatilization of corn cobs and sugar cane bagasse in an inert atmosphere[J]. Thermochimica Acta, 2011, 517: 81-89.

DOI: 10.1016/j.tca.2011.01.035

Google Scholar