Improvement of the Performance of Dye-Sensitized Solar Cells with TiO2 Photoanodes in Unsaturated

Article Preview

Abstract:

The photoelectrochemical properties of the TiO2 photoanode in unsaturated dye-adsorption state for dye-sensitized solar cells (DSCs) were investigated by the electrochemical impedance spectroscopy (EIS) and the light absorption spectrum. Significant low charge recombination as well as light absorption saturation was observed with the TiO2 photoanode in unsaturated dye-adsorption state. Due to these effects, from saturated to unsaturated dye-adsorption state, the fill factor (ff) increased from 0.60 to 0.78 and the open circuit photovoltage (Voc) increased from 770mV to 780mV. The short circuit photocurrency density (Isc) reached the maximum 10.51mA cm-2 before the TiO2 photoanode attained the saturated dye-adsorption state. The energy conversion efficiency (η) of DSC was enhanced from 4.86% to 5.34% by adjusting the TiO2 photoanode from saturated to unsaturated dye-adsorption state.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2979-2985

Citation:

Online since:

October 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Qin, G. Zhang, Q. Liao, Y. Qiu, Y. Huang, Y. Zhang. Colloids and Surfaces A: Physicochem. Eng. Aspects 402 (2012) 127-131.

Google Scholar

[2] J. Chae, M. Kang. Journal of Power Sources 196 (2011) 4143-4151.

Google Scholar

[3] A. Yella, H. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Yeh, S. M. Zakeeruddin, M. Grätzel. Science 334 (2011) 629-633.

DOI: 10.1126/science.1209688

Google Scholar

[4] D. Cahen, G. Hodes, M. Grätzel, J. F. Guiilemoles. J. Phys. Chem. B 104 (2000) 2053-(2059).

Google Scholar

[5] X. Tang, J. S. Qian, Z. Wang, H. Wang, Q. Feng, G. Liu. Journal of Colloid and Interface Science 330 (2009) 386-391.

Google Scholar

[6] J. Yum, R. H. Baker, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Gräzel. Nano Today 5 (2010) 91-96.

Google Scholar

[7] Q. Wang, J. E. Moser, Michael Grätzel. J. Phys. Chem. B 109 (2005) 14945-14953.

Google Scholar

[8] M. Grätzel. Current Opinion in Colloid & Interface Science 4 (1999) 314-321.

Google Scholar

[9] M. Zalas, G. Schroeder. Materials Chemistry and Physics 134 (2012) 170-176.

Google Scholar

[10] C. He, Z. Zheng, H. Tang, L. Zhao, F. Lu. J. Phys. Chem. C 4 (2009) 10322-10325.

Google Scholar

[11] A. F. Kanta, A. Decroly. Materials Chemistry and Physics 130 (2011) 843-846.

Google Scholar

[12] Y. Liu, X. Suna, Q. Taia, H. Hua, B. Chena, N. Huanga, B. Seboa, X. Zhao. Journal of Power Sources 196 (2011) 475-481.

Google Scholar

[13] J. Bisquert. J. Phys. Chem. B 106 (2002) 325-333.

Google Scholar

[14] G.D. Sharma, P. Suresh, M.S. Roy, J. A. Mikroyannidis. Journal of Power Sources 195 (2010) 3011-3016.

Google Scholar

[15] X. Li, C. Gao, J. Wang, B. Lu, W. Chen, J. Song, S. Zhang, Z. Zhang, X. Pan, E. Xie Journal of Power Sources 214 (2012) 244-250.

Google Scholar