Element Transformation and Gaseous Products Distribution for Lignite Gasification in Supercritical Water

Article Preview

Abstract:

Effects of factors on efficiencies of elements (C/H/N/S) and gaseous products were studied for lignite gasification in supercritical water. CO2, CH4 and H2 are main gaseous products. Temperature plays the most important role. With higher temperature, total efficiencies of lignite and elements have linear increasement, and yields of CO2, CH4 and H2 rise significantly while CO stays constant almostly. With pressure increasing, total efficiencies of lignite and elements are enhanced, and yields of CO2 and CH4 rise while change of H2 and CO is small. With increasing of equivalence ratio of oxygen, efficiencies of C/H/N and lignite, yields of CO2 and H2 rise, but yield of CH4 reduces. Increasing equivalence ratio of oxygen plays positive role in fixation of S on residues.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2999-3004

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Modell M, Reid R C, Amin S I. Gasification Process:US, 4113446[P]. 1978-09-12.

Google Scholar

[2] Ivette Vera Pérez, Steven Rogak, Richard Branion. The Journal of Supercritical fluids, 2004, 30(1): 71-87.

DOI: 10.1016/s0896-8446(03)00166-9

Google Scholar

[3] Young Ho Shin, Nae Chul Shin, Bambang Veriansyah, et al. The Journal of hazardous materials, 2009, 163(2-3): 1142-1147.

Google Scholar

[4] M.D. Bermejo,F. Cantero M.J. Cocero. Chemical Engineering Journal, 2008, 137(3): 542-549.

Google Scholar

[5] Young Ho Shin, Hong-shik Lee, Bambang Veriansyah, et al. The Journal of supercritical fluids, 2012, 72: 120-124.

Google Scholar

[6] Y.J. Lu,L.J. Guo C.M. Ji, et al. International Journal of Hydrogen Energy, 2006, 31(7): 822-831.

Google Scholar

[7] Chan drasekar Venkitasamy, Doug Hendry, Nikolas Wilkinson, et al. Fuel, 2011, 90(8): 2662-2670.

Google Scholar

[8] Hui Jin, Youjun Lu, Liejin Guo, et al. International Journal of Hydrogen Energy, 2010, 35 (7): 3001-3010.

Google Scholar

[9] Youjun Lu, Liejin Guo, Ximin Zhang, et al. International Journal of Hydrogen Energy, 2012, 37(4): 3177-318.

Google Scholar

[10] Masaru Watanabe, Makoto Mochiduki, Shuhei Sawamoto, et al. The Journal of Supercritical Fluids, 2001, 20(3): 257-266.

Google Scholar

[11] Linghui Meng, Yudong Huang, Yan Zhang. Materials science &technology, 2003, 11(3):311-314(In Chinese).

Google Scholar

[12] Zhang Hai-feng, Su Xiao-li, Sun Dong-kai, et al. Journal of Fuel Chemistry and Technology, 2007, 35(4): 487-491.

Google Scholar

[13] Jude A. Onwudili, Paul T. Williams. The Journal of Supercritical Fluids, 2009, 49(3): 356-368.

Google Scholar

[14] Fu-Rong Xiu, Yingying Qi, Fu-Shen Zhang. Waste Management, 2013, 33(5): 1251-1257.

Google Scholar

[15] Leming Cheng, Rong Zhang, Jicheng Bi. Fuel Processing Technology, 2004, 85(8-10): 921-932.

Google Scholar

[16] Wu Bo, Hu Hao-quan, ZHAO Yun-peng. Journal of Fuel Chemistry and Technology, 2009, 37(4): 385-392.

Google Scholar

[17] W. BÜhler, E. Dinjus, H.J. Ederer, et al. The Journal of Supercritical Fluids , 2002, 22(1): 37–53.

Google Scholar

[18] Rong Zhang, Wei Jiang, Leming Cheng. International Journal of Hydrogen Energy, 2010, 35: 11810-11815.

Google Scholar

[19] Shuzhong Wang, Yang Guo, Liang Wang, et al. Fuel Processing Technology, 2011, 92(3): 291-297.

Google Scholar

[20] Tao Wang, Xiaofeng Zhu. Fuel, 2003, 82(18): 2267-2272.

Google Scholar