The Comparative Analysis of Two Homologous Genomic Islands Associated with the Noncoding Sequence in Enterobacter cloacae

Article Preview

Abstract:

The genomic islands (GIs) are usually the products of horizontal gene transfer (HGT) that is evolution pattern in prokaryote. Two homologous GIs (WSU1GINo and KU01GINo) containing the homologous integrase of Bacteriophage P2 were determined in Enterobacter cloacae through flanking sequence alignment of the homologous integrase. The homologous GIs were integrated into the noncoding sequence. Their common flanking sequence is 5-AAGGCTCCCTCAGGAGC-3, and their integrases share 97% similarity. About two-thirds of the nucleotide sequences between WSU1GINo and KU01GINo are highly similar. The different regions between WSU1GINo and KU01GINo mainly include hypothetical gene, Phage-related tail gene, capsid gene, and baseplate assembly gene. In conclusion, the tandem arrangement of WSU1GINo and KU01GINo will be artificially constructed because of their similar structural characteristics, and phage coat protein assembly will also be analyzed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-6

Citation:

Online since:

October 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. E. Jr. Sanders, and C. C. Sanders: Clin Microbiol Rev. 10: 220-241. (1997).

Google Scholar

[2] K. A. Nishijima, M. M. Wall, and M. S. Siderhurst: Plant Dis. 91: 1221-1228. (2007).

Google Scholar

[3] Y. Ren, Y. Ren, Z. Zhou, et al.: J Bacteriol. 192: 2463-2464. (2010).

Google Scholar

[4] Y. Xu, A. Wang, F. Tao, et al.: J Bacteriol. 194: 897-898. (2012).

Google Scholar

[5] K. M. Deangelis, P. D'Haeseleer, D. Chivian, et al.: Stand Genomic Sci. 5: 69-85. (2011).

Google Scholar

[6] W. Y. Liu, K. M. Chung, C. F. Wong, et al.: J Bacteriol. 194: 5965. (2012).

Google Scholar

[7] J. L. Humann, M. Wildung, C. H. Cheng, et al: Stand Genomic Sci. 5: 279-286. (2011).

Google Scholar

[8] U. Dobrindt, B. Hochhut, U. Hentschel, et al.: Nat Rev Microbiol. 2: 414–424. (2004).

Google Scholar

[9] M. Juhas, J.R. van der Meer, M. Gaillard, et al.: FEMS Microbiol Rev. 33: 376–393. (2009).

Google Scholar

[10] S. J. Nigro, and R. M. Hall: J Antimicrob Chemother. 66: 2175-2176. (2011).

Google Scholar

[11] M.W. van Passel, A.C. Luyf, A.H. van Kampen, et al.: Bioinformatics. 21: 3053-3055. (2005).

Google Scholar

[12] A. Marchler-Bauer, J.B. Anderson, F. Chitsaz, et al.: Nucleic Acids Res. 37: D205-D210. (2009).

Google Scholar

[13] C. Frumerie, L. Sylwan, A. Ahlgren-Berg, et al.: Virology.  332: 284-294. (2005).

DOI: 10.1016/j.virol.2004.11.015

Google Scholar

[14] B. Hochhut, J.W. Beaber, R. Woodgate, et al.: J Bacteriol. 183: 1124-1132. (2001).

Google Scholar