[1]
Yang J, Chen N, Short-term hydrothermal coordination using multi-pass dynamic programming, IEEE Trans Power Syst, 4(3), 1050-6. (1989).
DOI: 10.1109/59.32598
Google Scholar
[2]
Tang J, Peter B, Hydrothermal scheduling via extended differential dynamic programming and mixed coordination, IEEE Trans Power Syst, 10(4), 2021-8. (1995).
DOI: 10.1109/59.476071
Google Scholar
[3]
Guan X, Peter B, Nonlinear approximation method in Lagrangian relaxation based algorithms for hydrothermal scheduling, IEEE Trans Power Syst, 13(1), 226-35. (1998).
DOI: 10.1109/59.387916
Google Scholar
[4]
Salam M, Mohamed K, Hydrothermal scheduling based Lagrangian relaxation approach to hydrothermal coordination, IEEE Trans Power Syst, 13(1), 226-35. (1998).
DOI: 10.1109/59.651640
Google Scholar
[5]
Pereira MVF, Pinto LMVG , A decomposition approach to the economic dispatch of the hydrothermal systems, IEEE Trans PAS, 101(10), 3851-60. (1982).
DOI: 10.1109/tpas.1982.317035
Google Scholar
[6]
K.P. Wong Y.W. Wong, Short-term hydrothermal scheduling part 1: simulated annealing approach, IEE Proc. Gen. Transm. Distribution, 141(5), 371-376. (1994).
DOI: 10.1049/ip-gtd:19941350
Google Scholar
[7]
P.C. Yang, H.T. Yang, C.L. Huang, Scheduling short-term hydrothermal generation using evolutionary Programming techniques, IEE Proc. Gen. Transm. Distribution, 143(4), 371-376. (1996).
DOI: 10.1049/ip-gtd:19960463
Google Scholar
[8]
S.O. Orero M.R. Irving, A genetic algorithm modeling framework and solution technique for short term optimal hydrothermal scheduling, IEEE Trans. PWRS, 13 (2), 247-251. (1998).
DOI: 10.1109/59.667375
Google Scholar
[9]
E. Gil. Bustos,H. Rudnick, Short-term hydrothermal generation scheduling model using a genetic algorithm, IEEE Trans. Power Syst, 18(4), 1256-1264. (2003).
DOI: 10.1109/tpwrs.2003.819877
Google Scholar
[10]
N. Sinha, R. Chakrabarty, P.K. Chattopadhyay, Fast evolutionary programming techniques for short-term hydrothermal scheduling, Electr. Power Syst, Res. 66, 97-103. (2003).
DOI: 10.1016/s0378-7796(03)00016-6
Google Scholar
[11]
B. Yu, X. Yuan, and J. Wang, Short-term hydro-thermal scheduling using Particle Swarm Optimization method, Energy Conversion &Management, 48, 1902-1908. (2007).
DOI: 10.1016/j.enconman.2007.01.034
Google Scholar
[12]
Songfeng Lu, Chengfu Sun, Zhengding Lu, An improved quantum-behaved particle swarm optimization method for short-term combined economic emission hydrothermal scheduling, Energy Conversion and Management, 51, 561-571. (2010).
DOI: 10.1016/j.enconman.2009.10.024
Google Scholar
[13]
Qingyun Duan, Soroosh Sorooshian, Vijai K. Gupta, Optimal use of the SCE-UA global optimization method for calibrating watershed models, Journal of Hydrolog, 158, 265-284. (1994).
DOI: 10.1016/0022-1694(94)90057-4
Google Scholar
[14]
Mark Thyer and George Kuczera; Bryson C. Bates, Probabilistic optimization for conceptual rainfall-runoff models: A comparison of the shuffled complex evolution and simulated annealing algorithms, Water Resources Research, vol35, NO. 3, pp.767-773, March. (1999).
DOI: 10.1029/1998wr900058
Google Scholar
[15]
Soroosh Sorooshian, Qingyun Duan, Vijai Kumar Gupta, Calibration of rainfall - runoff models: application of global optimization to the sacrament soil moisture accounting model, Water Resource Research, 29(4), 1185-1197. (1993).
DOI: 10.1029/92wr02617
Google Scholar
[16]
Duan D Y, Gupta V K, Sorooshian S, Shuffled comples evolution approach for effective and efficient global minimization, Journal of Optimization Theory and Applications, 158, 265-284. (1994).
DOI: 10.1007/bf00939380
Google Scholar
[17]
Duan Q, Sorooshian S, Gupta VK, Effective and efficient global optimization for conceptual rainfall- runoff models, Water Resource Research, 28 (4), 1015-1031. (1992).
DOI: 10.1029/91wr02985
Google Scholar