Multi-band Terahertz Chiral Metamaterials Based on Complementary Cross-wire Structure

Article Preview

Abstract:

In this paper, a multi-band chiral metamaterials (CMMs) based on complementary cross-wire structure is proposed and studied numerically. The finite element method (FEM) method was used to simulate the EM properties of the designed structure. Numerical results indicate that the giant optical activity and multiband negative refractive index can be realized in terahertz region. The proposed CMMs may have some potential applications in novel terahertz device.Particle size of bayerite (d50) was about 24 μm. Al2O3 was obtained after calcination at 1050 °C for 1.5 h.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-141

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. B. Pendry, A chiral route to negative refraction, Science 306(2004), 1353–5.

Google Scholar

[2] J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki and C. M. Soukoulis, Negative refractive index due to chirality, Phys. Rev. B 79(2009), 121104.

DOI: 10.1103/physrevb.79.121104

Google Scholar

[3] S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang and X. Zhang, Negative refractive index in chiral metamaterials, Phys. Rev. Lett. 102(2009)023901.

DOI: 10.1103/physrevlett.102.023901

Google Scholar

[4] B. Wang, J. Zhou, T. Koschny, M. Kafesaki, C.M. Soukoulis, Chiral metamaterials: simulations and experiments, J. Opt. A: Pure Appl. Opt. 11 (2009), 114003/1–10.

DOI: 10.1088/1464-4258/11/11/114003

Google Scholar

[5] Z. Li, M. Mutlu, and E. Ozbay, Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission, Journal of Optics 15(2013), 023001/1-13.

DOI: 10.1088/2040-8978/15/2/023001

Google Scholar

[6] Z. Li, R. Zhao, Th. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, Chiral metamaterials with negative refractive index based on four U, split ring resonators, Appl. Phys. Lett. 97(2010), 081901.

DOI: 10.1063/1.3457448

Google Scholar

[7] F. Fang, and Y. Z. Cheng, Dual-band terahertz chiral metamaterial with giant optical activity and negative refractive index based on cross-wire structure, Progress In Electromagnetics Research M, 31(2013), 59-69.

DOI: 10.2528/pierm13042409

Google Scholar

[8] R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, Phys. Rev. B 83(2011), 035105.

Google Scholar

[9] J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O'Hara, Terahertz chiralmetamaterials with giant and dynamically tunable optical activity, Phys. Rev. B 86(2012), 035448.

DOI: 10.1103/physrevb.86.035448

Google Scholar

[10] Z. Wu, B. Q. Zhang, and S. Zhong, A double-layer chiral metamaterial with negative index, J. of Electromagn. Waves and Appl., 24(2010), 983–992.

DOI: 10.1163/156939310791285173

Google Scholar

[11] J. Li, F. Q. Yang, and J. F. Dong, Design and simulation of L-shaped chiral negative refractive index structure, Progress In Electromagnetics Research, 116(2011), 395-408.

DOI: 10.2528/pier11032601

Google Scholar

[12] Z. Li, K. B. Alici, E. Colak, E. Ozbay, Complementary chiral metamaterials with giant optical activity and negative refractive index, Appl. Phys. Lett. 98(2011)161907.

DOI: 10.1063/1.3574909

Google Scholar

[13] Y. Z. Cheng, Y. Nie, and R. Z. Gong, Giant optical activity and negative refractive index using complementary U-shaped structure assembly, Progress In Electromagnetics Research M, 25(2012), 239-253.

DOI: 10.2528/pierm12070403

Google Scholar

[14] Y. Cheng, Y. Nie, L. Wu, and R. Z. Gong, Giant Circular Dichroism and Negative Refractive Index of Chiral Metamaterial Based on Split-Ring Resonators, Progress In Electromagnetics Research, 138(2013), 421-432.

DOI: 10.2528/pier13011202

Google Scholar

[15] Y. Ding, G. Zhang and Y. Cheng, Giant optical activity and negative refractive index in the terahertz region using complementary chiral metamaterials, Phys. Scr. 85 (2012), 065405.

DOI: 10.1088/0031-8949/85/06/065405

Google Scholar

[16] N. Liu, S. Kaiser, and H. Giessen. Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules. Adv. Mater. 20(2008), 4521–4525.

DOI: 10.1002/adma.200801917

Google Scholar