Research on Cu-Cr Alloy Produced by Equal Channel Angular Pressing

Article Preview

Abstract:

Cu-7.5wt%Cr alloy was subjected to severe plastic deformation at room temperature using the procedure of equal channel angular pressing. Microstructures of the processed material were investigated by metallographic analysis, SEM and TEM. The results show that grains size of the processed materials was obviously fined. Cr precipitated in matrix was distributed uniformly. And micro-hardness of the copper alloy increased a lot.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

131-136

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Sun Shiqing, Mao Lei, Liu Zongmao, et al. High strength and high conductivity copper based composites. Journal of HeBei University of Science and Technology, 2000, 1: 19-22.

Google Scholar

[2] Cheng Wenge, Wang Chun. Advances in copper-matrix material for leadframe and electronic packaging of integratal circuitry(IC). Material Review, 2002, 7: 28-31.

Google Scholar

[3] Juan-hua Su, Ping Liu, Qi-ming Dong, et al, Aging study of rapidly solidified and solid-solution Cu–Cr–Sn–Zn alloy [J], Journal of Materials Processing Technology, 2008, 205(1–3): 366-369.

DOI: 10.1016/j.jmatprotec.2007.11.184

Google Scholar

[4] J.Y. Cheng, B. Shen, F.X. Yu, Precipitation in a Cu–Cr–Zr–Mg alloy during aging [J], Materials Characterization, 2013, 81: 68-75.

DOI: 10.1016/j.matchar.2013.04.008

Google Scholar

[5] Wen-xiong HE, Yang YU, Er-de WANG, et al, Microstructures and properties of cold drawn and annealed submicron crystalline Cu-5%Cr alloy [J], Transactions of Nonferrous Metals Society of China, 2009, 19(1): 93-98.

DOI: 10.1016/s1003-6326(08)60234-4

Google Scholar

[6] Valiev RZ, Islamgaliev RK, Alexandrov IV. Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science, 2000, 45(2): 103-189.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[7] Segal VM. Severe plastic deformation: Simple shear versus pure shear, Materials Science and Engineering A, 2002, 338(1-2): 331-344.

DOI: 10.1016/s0921-5093(02)00066-7

Google Scholar

[8] A.B. Naizabekov, V.A. Andreyachshenko, Radim Kocich, Study of deformation behavior, structure and mechanical properties of the AlSiMnFe alloy during ECAP-PBP [J], Micron, 2013, 44: 210-217.

DOI: 10.1016/j.micron.2012.06.011

Google Scholar

[9] Hongxia Wang, Kangkang Zhou, Guoyin Xie, et al, Microstructure and mechanical properties of an Mg–10Al alloy fabricated by Sb-alloying and ECAP processing [J], Materials Science and Engineering: A, 2013, 560: 787-791.

DOI: 10.1016/j.msea.2012.10.036

Google Scholar

[10] N.D. Stepanov, A.V. Kuznetsov, G.A. Salishchev, et al, Effect of cold rolling on microstructure and mechanical properties of copper subjected to ECAP with various numbers of passes [J], Materials Science and Engineering: A, 2012, 554: 105-115.

DOI: 10.1016/j.msea.2012.06.022

Google Scholar

[11] P.K. Jayakumar, K. Balasubramanian, G. Rabindranath Tagore, Recrystallisation and bonding behaviour of ultra fine grained copper and Cu–Cr–Zr alloy using ECAP [J], Materials Science and Engineering: A, 2012, 538: 7-13.

DOI: 10.1016/j.msea.2011.12.069

Google Scholar

[12] Iwahashi. Y, Wang. J, Horita. Z, et al. Principle of equal channel-angular pressing for the processing of ultra-fine grained materials, Scripta Metall, 1996, 35: 143-146.

DOI: 10.1016/1359-6462(96)00107-8

Google Scholar