Design and Simulation of a Polarization-Independent Active Metamaterial Terahertz Modulator

Article Preview

Abstract:

The design and simulation of a polarization-independent active metamaterial terahertz modulator is presented in this work. The device incorporates an array of gold triple SRRs on an n-doped gallium arsenide layer to create an active metamaterial terahertz modulator with a high modulation depth, a high modulation speed and an especial polarization-independent performance for use in terahertz communication, imaging and sense.We established the theoretical model and simulatedthe key performances of the device with Ansoft HFSS.The results showed that the device exhibits a polarization-insensitivebehavior with a maximum amplitude modulation depth of 71% and a modulation rate of3.2Mbps at the resonance frequency of0.86 THz.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

167-172

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Zh. Xu, X.C. Zhang,: THz technology science and application. The Series of Advanced Physics of Peking University, Peking University Press(2007): Beijing, pp.1-6. in Chinese.

Google Scholar

[2] C.L. Zhang: Terahertz Sensing and Imaging, National Defense Industry Press: Beijing(2008), pp.218-220. in Chinese.

Google Scholar

[3] W. Zh. Cui: Electromagnetics Metamaterials and its Application, National Defense Industry Press: Beijing(2008). in Chinese.

Google Scholar

[4] H.T. Chen, W.J. Padilla, J.M.O. Zide, et al: Active terahertz metamaterial devices. Nature, Vol. 7119 (2006), pp.597-600.

DOI: 10.1038/nature05343

Google Scholar

[5] T. Driscoll, S. Palit, M. M. Qazilbash, et al.: Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide, Applied Physics Letters. Vol. 2 (2008), p.24101.

DOI: 10.1063/1.2956675

Google Scholar

[6] H.T. Chen, W.J. Padilla, M.J. Cich, et al.: A metamaterial solid-state terahertz phase modulator. Nature Photonics, Vol. 3 (2009), pp.148-151.

DOI: 10.1038/nphoton.2009.3

Google Scholar

[7] W.J. Padilla, M.T. Aronsson, C. Highstrete, et al.: Electrically resonant terahertz metamaterials: Theoretical and experimental investigations. Physical Review B, Vol. 4(2007), p.041102.

DOI: 10.1103/physrevb.75.041102

Google Scholar

[8] W.J. Padilla, A.J. Taylor, C. Highstrete, et al.: Dynamical Electric and Magnetic Metamaterial Response at Terahertz Frequencies. Physical Review Letters, Vol. 10(2006), p.107401.

DOI: 10.1103/physrevlett.96.107401

Google Scholar

[9] Y. Yuan, C. Bingham, T. Tyler, et al.: Dual-band planar electric metamaterial in the terahertz regime. Optics Express, Vol. 13 (2008), pp.9746-9752.

DOI: 10.1364/oe.16.009746

Google Scholar

[10] H.T. Chen, S. Palit, T. Tyler, et al.: Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves. Applied Physics Letters, Vol. 9(2008), pp.091117-3.

DOI: 10.1063/1.2978071

Google Scholar

[11] D. Seliuta, J. Macutkevič, R. Adomavičius, et al.: Modulation of monochromatic terahertz radiation in transmission and reflection modes using planar metamaterial. Electronics Letters, Vol. 8 (2011).

DOI: 10.1049/el.2011.0411

Google Scholar

[12] Y. Yang, R. Huang L.Q. Cong, et al.: Modulating the fundamental inductive-capacitive resonance in asymmetric double-split ring terahertz metamaterials. Applied Physics Letters, Vol. 98 (2011), p.121114.

DOI: 10.1063/1.3571288

Google Scholar

[13] O. Paul, C. Imhof, B. Lägel, et al.: Polarization-independent active metamaterial for high-frequency terahertz modulation. Optics Express, Vol. 2 (2009).

DOI: 10.1364/oe.17.000819

Google Scholar

[14] A.K. Azad A.J. Taylor, E. Smirnova, et al.: Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators. Applied Physcis Letters, Vol. 1(2008), p.011119.

DOI: 10.1063/1.2829791

Google Scholar