Feedback Control of Parabolic Distributed Parameter Systems

Article Preview

Abstract:

In this paper, the feedback control problem is considered for a class of parabolic distributed parameter systems (DPS). By employing a new Lyapunov-Krasovskii functional as well as the linear matrix inequality (LMI), a novel feedback controller is developed, which can guarantee the closed-loop system states uniformly convergent to zero. The stability conditions for closed-loop systems can be easily checked by utilizing the numerically efficient Matlab LMI toolbox. At last, a numerical example shows the effectiveness of the presented LMI-based methods.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

337-343

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.J. Balas, Feedback control of linear diffusion processes, Internat. J. Control, 1979, 29, 523-533.

Google Scholar

[2] P. Castilla, M. Meraz, O. Monroy, A. Noyola, Anaerobic treatment of low concentration waste water in an inverse fluidized bed reactor, Water Sci. Technol. 2000, 41, 245-251.

DOI: 10.2166/wst.2000.0452

Google Scholar

[3] P.D. Christofides, Robust control of parabolic PDE systems, Chem. Eng. Sci., 1998, 53, 2949–2965.

DOI: 10.1016/s0009-2509(98)00091-8

Google Scholar

[4] W.E. Olmstead, W.E. Schmitendorf, Optimal control of the end-temperature in a semi-infinite rod, J. Appl. Math. Phys., 1977, 28, 697-706.

DOI: 10.1007/bf01601345

Google Scholar

[5] Jose Alvarez-Ramirez, Hector Puebla, J. Alberto Ochoa-Tapia, Linear boundary control for a class of nonlinear PDE processes, Systems & Control Letters, 2001, 44, 395-403.

DOI: 10.1016/s0167-6911(01)00159-1

Google Scholar

[6] Balas, M. J., Feedback Control of Linear Diffusion Processes, Int. J. Contr., 1979, 29, 523-534.

Google Scholar

[7] Chen, C. C. and H. C. Chang, Accelerated Disturbance Damping of an Unknown Distributed System by Nonlinear Feedback, AIChE J., 1992, 38, 1461-1462.

DOI: 10.1002/aic.690380916

Google Scholar

[8] Christofides, P. D. and P. Daoutidis, Feedback Control of Parabolic PDE Systems, AIChE Annual Meeting, paper No 180b, Miami Beach, Florida, (1995).

Google Scholar

[9] Panagiotis D. Christofides and Prodromos Daoutidis, Nonlinear Control of Diffusion-Convection-Reaction Processes, Computers chem. Engng, 1996, 20, S1071-S1076.

DOI: 10.1016/0098-1354(96)00186-x

Google Scholar

[10] Gay, D. H. and W. H. Ray, Identification and Control of Distributed Parameter Systems by Means of the Singular Value Decomposition, Chem. Eng. Sci., 1995, 50, 1519-1532.

DOI: 10.1016/0009-2509(95)00017-y

Google Scholar

[11] S. Alotaibi, M. Sen, B. Goodwine, K.T. Yang, Controllability of crossflow heat exchanger, Int. J. Heat Mass Transfer, 2004, 47(5), 913–924.

DOI: 10.1016/j.ijheatmasstransfer.2003.08.021

Google Scholar

[12] Ahmed Maidi a, Moussa Diaf a, Jean-Pierre Corriou , Optimal linear PI fuzzy controller design of a heat exchanger, Chemical Engineering and Processing, 2008, 47, 938–945.

DOI: 10.1016/j.cep.2007.03.008

Google Scholar

[13] Smyshlyaev, A., & Krstic, M., Closed form boundary state feedbacks for a class of 1D partial integro-differential equations. IEEE Transactions on Automatic Control, 2004, 49(12), 2185–2202.

DOI: 10.1109/tac.2004.838495

Google Scholar

[14] Smyshlyaev, A., & Krstic, M., Backstepping observers for a class of parabolic PDEs. Systems & Control Letters, 2005, 54, 613–625.

DOI: 10.1016/j.sysconle.2004.11.001

Google Scholar

[15] [Andrey Smyshlyaev, Miroslav Krstic, Adaptive boundary control for unstable parabolic PDEs—Part III: Output feedback examples with swapping identifiers, Automatica, 2007, 43, 1557-1564.

DOI: 10.1016/j.automatica.2007.02.015

Google Scholar

[16] Yu.V. Orlov, V.I. Utkin, Sliding mode control in indefinite-dimensional systems, Automatica, 1987, 23(6) , 753-757.

DOI: 10.1016/0005-1098(87)90032-x

Google Scholar

[17] Hailong Xing, Cunchen Gao, Gongyou Tang, Donghai Li. Variable Structure Sliding Mode Control for a Class of Uncertain Distributed Parameter Systems with Time-Varying delays.International Journal of Control, 2009, 82(2), 287-297.

DOI: 10.1080/00207170802078149

Google Scholar

[18] Meng-Bi Cheng, Verica Radisavljevic, Wu-Chung Su, Sliding mode boundary control of a parabolic PDE system with parameter variations and boundary uncertainties, Automatica, 2011, 47(2) 381-387.

DOI: 10.1016/j.automatica.2010.10.045

Google Scholar

[19] Hailong Xing, Donghai Li, Cunchen Gao, Yongkui Kao, Delay-independent Sliding Mode Control for a Class of Quasi-linear Parabolic Distributed Parameter Systems with Time-Varying Delay, Journal of the Franklin Institute, vol. 350, no. 2, pp.397-418, (2013).

DOI: 10.1016/j.jfranklin.2012.12.007

Google Scholar

[20] Luo, Y. P. and Deng, F. Q., LMI-based approach of robust control for uncertain distributed parameter control systems with time-delay, Control Theory & Applications , 2006, 23, 318–324.

Google Scholar

[21] Hu Yueming, Zhou Qijie, The variable structure control for distributed parameter systems, Bejing: publishing company of National defence industry, (1996).

Google Scholar

[22] David Gilbarg, Neil S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, (1997).

Google Scholar