Multiscale Investigation on Interfacial Properties of Cu/Al Structures in Electronic Packaging

Article Preview

Abstract:

With the development of micro/nanoelectronic technology and the miniaturization of IC (Integrated Circuit) packaging, the interfacial characteristics of the nanoscale interface structure in IC packaging become more and more serious on the whole performance of IC or devices. The FEM (finite element method) is used to estimate the thermodynamics properties of the Al-Cu interface structures at the macroscopic scale. Meanwhile, the NEMD (non-equilibrium molecular dynamics) method is used to investigate the interfacial heat transfer at the nanoscale. In the macroscopic scale, the deformation and nanocracks always appear at the outside edge of interface between Cu solder and Al pad due to the dissimilar thermal expand expansion coefficients. In the nanoscale, there is diffusion between different atoms at the interface, the diffusion thickness increases with the temperature increasing. The diffusion between Al and Cu atoms enhances the heat transfer with the temperature increasing. The results reveal the mechanism of the interfacial heat transfer and interfacial crack, which also supply a multiscale analysis method to evaluate the interfacial properties in the IC packaging, which is helpful to design and manufacture of IC assembly.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

60-65

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Oberhammer, G. Stemme: J. Microelectromech. Sys., vol. 14(2005), pp.419-425.

Google Scholar

[2] R. Karthic Narayanan, I. Sridhar, S. Subbiah: Appl. Phys. A, vol. 107(2012), pp.485-495.

Google Scholar

[3] C.T. Su, C.J. Yeh: Microelectron. Reliab., vol. 51(2011), pp.53-59.

Google Scholar

[4] E. Spaan, E. Ooms, W.D.V. Direl, C.A. Yuan, D.G. Yang, G.Q. Zhang: Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE), 2010 11th International Conference on. IEEE, (2010), pp.1-4.

DOI: 10.1109/esime.2010.5464572

Google Scholar

[5] H. Xu, C. Liu, V.V. Silberschmidt, Z. Chen, V.L. Acoff: J Phys. D, vol. 44(2011), P. 145301-5.

Google Scholar

[6] Z.W. Zhong: Microelectron. Reliab., vol. 51(2011), pp.4-12.

Google Scholar

[7] Chao-Ton Su, Cheng-Jung Yeh: Microelectron. Reliab., vol. 51(2011), pp.53-59.

Google Scholar

[8] Catherine H. Chen, Shawn X. Zhang, S.W. Ricky Lee, Lebbai Mohamed: Microelectron. Reliab., vol. 51(2011), pp.166-170.

Google Scholar

[9] C.W. Tan, A.R. Daud, M.A. Yarmo: Appl. Surf. Sci., vol. 191(2002), pp.67-73.

Google Scholar

[10] L.Q. Zhang, P. Yang, M. Chen, N.B. Liao: Appl. Surf. Sci., vol. 258(2012), pp.3975-3979.

Google Scholar

[11] G. Anciaux, S.B. Ramisetti, J.F. Molinari: Comput. Method. Appl. M., vol. 15( 2012), pp.204-212.

Google Scholar

[12] W.Z. Shan, Udo Nackenhorst: Computat. Mech., vol. 46(2010), pp.577-596.

Google Scholar

[13] W.A. Curtin, R.E. Miller: Modeling and Simulation in Materials Science and Engineering, vol. 11(2003), p: 33-68.

Google Scholar

[14] N.B. Liao, P. Yang: J. Thermophys. Heat Tr., vol. 22(2008), pp.581-586.

Google Scholar

[15] J.D. Lee, X.Q. Wang, Y.P. Chen: Theor. Appl. Fract. Mec., vol. 51(2009), pp.33-40.

Google Scholar

[16] P. Yang, N.B. Liao: IEEE Transactions Adv. Pack., vol. 31(2008), pp.496-501.

Google Scholar

[17] P. Yang, N.B. Liao: Appl. Phys. A, vol. 92(2008), pp.329-335.

Google Scholar

[18] L.Q. Zhang, P. Yang, F.W. Xie, T. Xi, X.G. Yu, X.F. Song: Advanced Materials Research, vol. 382(2012, pp.242-246.

Google Scholar

[19] B. K. Appelt, L. Huang, Y. S. Lai, S. Chen: ICEPT-HDP, Shanghai, (2011), pp.410-412.

Google Scholar

[20] G. Anciaux, S.B. Ramisetti, J.F. Molinari: Comput. Methods Appl. Mech. Eng., vol. 205-208(2012), pp.204-212.

Google Scholar

[21] P. Yang, N.B. Liao, C. Li, S.H. Shang: Int. J. Nonlinear Sci., vol. 10(2009), pp.483-491.

Google Scholar

[22] N.B. Liao, P. Yang, M. Zhang, W. Xue: Mat. Sci. Engineering. A-struct., vol. 527(2010), pp.6076-6081.

Google Scholar

[23] Alexis R. Abramson, Changlin Tien, Arun Majumdar: ASME J. Heat Transfer, vol. 124(2002), pp.963-970.

Google Scholar

[24] J.R. Lukes, D.Y. Li, X.G. Liang, C.L. Tien: ASME J. Heat Transfer, vol. 122(2000), pp.536-543.

Google Scholar

[25] S.H. Ju, X.G. Liang, S.C. Wang: J. Phys. D: Appl. Phys., vol. 43(2010), p.085407.

Google Scholar

[26] N.B. Liao, P. Yang: Int. J. Numer. Method. H., vol. 20(2010), pp.84-95.

Google Scholar

[27] S. Xu: Procedia Engineering, vol. 15(2001), pp.3860-3864.

Google Scholar

[28] J.S. Rao: History Mech. Mach. Sci., vol. 20(2011), pp.141-183.

Google Scholar

[29] J. Segurado, R.A. Lebensohn J. LLorca, C.N. Tome. International Journal of Plasticity, vol. 28(2012), pp.124-140.

Google Scholar

[30] Z.P. Xu, M.J. Buehler: ACS Nano, vol. 3(2009), pp.2767-2775.

Google Scholar

[31] Zhang. Z.B. Zhou, J.S. Zhuo: Chin. J. Comput. Mech., 2005, 22(1): 8-11.

Google Scholar

[32] X.J. He, B. Liu, Z.Q. Lv, Z.H. Li: Microsyst. Technol., vol. 18(2012), pp.77-85.

Google Scholar

[33] M. Mohammad, A.M. Hailat, A.C. Zariff, N. Golam, P. Rahul, J.H. Hans: Microsyst. Technol., vol. 18(2012), pp.103-112.

Google Scholar

[34] L. Wen, Z. Yuan, L.L. Cheng, H.J. Zeng, J. Chu: Microsyst. Technol., vol. 18(2012), pp.113-118.

Google Scholar

[35] B. Chylak: 2009 11th Electronics Packaging Technology Conference (EPTC'2009), Singapore, pp.1-6.

Google Scholar

[36] C.F. Yu, C.M. Chan, L.C. Chan, K.C. Hsieh: Microelectron. Reliab., vol. 51(2011), pp.119-124.

Google Scholar

[37] P. Yang, C.J. Shen, N.B. Liao: Stain, vol. 45(2009), pp.527-534.

Google Scholar