[1]
K. Kadir, T. Sakai and I. Uehara. Structural investigation and hydrogen storage capacity of LaMg2Ni9 and (La0. 65Ca0. 35)(Mg1. 32Ca0. 68)Ni9 of the AB2C9type structure. J. Alloys Compd. Vol. 302 (2000), p.112.
DOI: 10.1016/s0925-8388(00)00581-8
Google Scholar
[2]
T. Kohno et al. Hydrogen storage properties of new ternary system alloys: La2MgNi9, La5Mg2Ni23, La3MgNi14. J. Alloys Compd. Vol. 311 (2000), p. L5.
DOI: 10.1016/s0925-8388(00)01119-1
Google Scholar
[3]
Hiroshi Hayakawa et al. Crystal Structures of La–Mg–Nix (x=3–4) System Hydrogen Storage Alloys. Mater. Trans. Vol. 46(6) (2005), p.1393.
Google Scholar
[4]
E. Akiba, H. Hayakawa and T. Kohno. Crystal structures of novel La-Mg-Ni hydrogen absorbing alloys. J. Alloys Compd. Vol. 408–412 (2006), p.280.
DOI: 10.1016/j.jallcom.2005.04.180
Google Scholar
[5]
T. Ozaki et al. Stacking structures and electrode performances of rare earth-Mg-Ni-based alloys for advanced nickel-metal hydride battery. J. Alloys Compd. Vol. 446–447 (2007), p.620.
DOI: 10.1016/j.jallcom.2007.03.059
Google Scholar
[6]
Shigekazu Yasuoka et al. Development of high-capacity nickel-metal hydride batteries using superlattice hydrogen-absorbing alloys. J. Power Sources. Vol. 156 (2006), p.662.
DOI: 10.1016/j.jpowsour.2005.05.054
Google Scholar
[7]
J. Gao et al. Effect of annealed treatment on microstructure and cyclic stability for La-Mg-Ni hydrogen storage alloys. J. Power Sources. Vol. 209 (2012), p.257.
DOI: 10.1016/j.jpowsour.2012.02.088
Google Scholar
[8]
A.Q. Deng et al. Phase Structure and Electrochemical Properties of Hydrogen Storage Alloys La4-xPrxMgNi19(x=0-2. 0). Rare Metal Mat Eng. Vol. 37(6) (2008), p.1037.
Google Scholar
[9]
Amélie Férey et al. Elaboration and characterization of magnesium-substituted La5Ni19 hydride forming alloys as active materials for negative electrode in Ni-MH battery. Electrochim. Acta. Vol. 54 (2009), p.1710.
DOI: 10.1016/j.electacta.2008.09.069
Google Scholar
[10]
Z.Y. Liu et al. Cyclic stability and high rate discharge performance of (La, Mg)5Ni19 multiphase alloy. Int. J. Hydrogen energy. Vol. 36 (2011), p.4370.
DOI: 10.1016/j.ijhydene.2010.12.134
Google Scholar
[11]
X.Q. Shen et al. The structure and 233K electrochemical properties of La0. 8-xNdxMg0. 2Ni3. 1Co0. 25Al0. 15 (x=0. 0–0. 4) hydrogen storage alloys. Int. J. Hydrogen energy. Vol. 34 (2009), p.2661.
Google Scholar
[12]
Y. Li et al. The effect of Nd content on the electrochemical properties of low-Co La–Mg–Ni-based hydrogen storage alloys. J. Alloys Compd. Vol. 458 (2008), p.357.
DOI: 10.1016/j.jallcom.2007.03.106
Google Scholar
[13]
Y. Li et al. Effect of rare earth elements on electrochemical properties of La-Mg-Ni-based hydrogen storage alloys. Int. J. Hydrogen energy. Vol. 34(2009), p.1399.
DOI: 10.1016/j.ijhydene.2008.11.049
Google Scholar
[14]
R.A. Young, in: Introduction to the rietveld method In, The Rietveld Method, edtied by R.A. Young, Oxford: IUCr, Oxford University Press(1995).
Google Scholar
[15]
R.J. Hill, C.J. Howard. J. Appl. Cryst. Vol. 20(1987), p.467.
Google Scholar