[1]
S. Davis, N. Tsagarakis, J. Canderle, D.G. Caldwell, Enhanced Modelling and Performance in Braided Pneumatic Muscle Actuators, The International Journal of Robotics Research. 22 (2003) 213-227.
DOI: 10.1177/0278364903022003006
Google Scholar
[2]
S. Davis, D.G. Caldwell, Braid Effects on Contractile Range and Friction Modeling in Pneumatic Muscle Actuators, The International Journal of Robotics Research. 25 (2006) 359-369
DOI: 10.1177/0278364906063227
Google Scholar
[3]
J.L. Serres, Dynamic Characterization of a Pneumatic Muscle Actuator and Its Application to a Resistive Training Device, Dissertation thesis, Wright State University (2008).
Google Scholar
[4]
T. Kerscher, J. Albiez, J.M. Zollner, R. Dillmann, Evaluation of the Dynamic Model of Fluidic Muscles using Quick-release, International Conference on Biomedical Robotics and Biomechatronics. Pisa (2006) 637-642.
DOI: 10.1109/biorob.2006.1639161
Google Scholar
[5]
J. Boržíková, J. Piteľ, M. Tóthová, B. Šulc, Dynamic Simulation Model of PAM-based Antagonistic Actuator, 12th International Carpathian Control Conference. Velké Karlovice (2011)
DOI: 10.1109/carpathiancc.2011.5945809
Google Scholar
[6]
M. Tóthová, J. Piteľ, J. Boržíková, Operating Modes of Pneumatic Artificial Muscle Actuator, Applied Mechanics and Materials, 308 (2013) 39-44.
DOI: 10.4028/www.scientific.net/amm.308.39
Google Scholar
[7]
M. Balara, The Upgrade Methods of the Pneumatic Actuator Operation Ability, Applied Mechanics and Materials, 308 (2013) 39-44.
DOI: 10.4028/www.scientific.net/amm.308.63
Google Scholar
[8]
M. Balara, M. Tóthová, Static and Dynamics Properties of the Pneumatic Actuator with Artificial Muscles, Proceedings from IEEE 10th Jubilee International Symposium on Intelligent Systems and Informatics. Subotica (2012) 577-581.
DOI: 10.1109/sisy.2012.6339483
Google Scholar
[9]
M. Tóthová, A. Hošovský, Dynamic Simulation Model of Pneumatic Actuator with Artificial Muscle, Proceedings from IEEE 11th International Symposium on Applied Machine Intelligence and Informatics, SAMI 2013, Herľany (2013) 47-51
DOI: 10.1109/sami.2013.6480994
Google Scholar
[10]
K. Židek, O. Líška, V. Maxim, Rehabilitation Device Based on Unconventional Actuator, Mechatronics – Recent Technological and Scientific Advances, Springer Berlin, 2001.
DOI: 10.1007/978-3-642-23244-2_84
Google Scholar
[11]
A. Hošovský, J. N. Marcinčin, J. Piteľ, J. Boržíková, K. Židek, Model-based Evolution of a Fast Hybrid Fuzzy Adaptive Controller for a Pneumatic Muscle Actuator, 9 (2012) 1-11
DOI: 10.5772/50347
Google Scholar
[12]
Information on http://www.festo.com/rep/en_corp/assets/pdf/info_501_en.pdf
Google Scholar
[13]
A. Hošovský, M. Havran, Dynamic Modeling of One Degree of Freedom Pneumatic Muscle-based Actuator for Industrial Applications, Tehnički Vjesnik, 19 (2012) 673-681.
Google Scholar
[14]
F.L. Lewis, D.M. Dawson, C.T. Abdallah, Robot Manipulator Control : Theory and Practice, Marcel Dekker, New York, 2004.
Google Scholar
[15]
P. Beater, Pneumatic Drives : System Design, Modelling and Control, Springer, New York, 2007.
Google Scholar
[16]
Information on http://hyperphysics.phy-astr.gsu.edu/hbase/icyl.html
Google Scholar
[17]
M. Balara, A. Balara, Structure and Control of PAM-based Servosystem (Štruktúra a riadenia servosystému s umelými svalmi – in Slovak), Transfer inovácií, 14 (2009) 39-44.
Google Scholar