Electro-Pneumatic Robot Actuator with Artificial Muscles and State Feedback

Article Preview

Abstract:

Pneumatic position servo system with artificial muscles described in this paper represents feedback control system with non-linear compensation controller of state variables. The designed system demonstrates the operating characteristics that are significantly more favorable than the original characteristics without compensation and they are similar to the properties of the linear system. Such system has principally a shorter control time, significantly lower dynamic control error and it allows apply larger constants of the controller. Following an increased invariance of system against disturbances and also its parametric invariance (robustness) occur.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-31

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Balara, The linearised control system of the pneumatic actuator, Annals of DAAAM for 2011, Vienna: DAAAM International, 2011, pp.1251-1252.

DOI: 10.2507/22nd.daaam.proceedings.610

Google Scholar

[2] R.C. Dorf and R.H. Bishop, Modern control systems, Addison-Wesley Publ. Company, 8. Edition, 1998, pp.109-145.

Google Scholar

[3] S. Hrehová and A. Vagaská, Application of fuzzy principles in evaluating quality of manufacturing process, WSEAS Transaction on Power Systems, Vol. 7, No. 2, 2012, pp.50-59.

Google Scholar

[4] D. Gabriška, G. Michaľčonok, P. Tanuška and T. Škulavík, Analysis of the compensation algorithm stability of disturbance for the phase control systems, Proceedings of 11th IFAC/IEEE International Conference on Programmable devices and embedded systems (PDeS 2012), Brno: IEEE, 2012, pp.100-104.

Google Scholar

[5] A. Hošovský, K. Židek and C. Oswald, Hybridized GA-optimization of neural dynamic model for nonlinear process, Proceedings of the 2012 13th International Carpathian Control Conference (ICCC), Košice: IEEE, 2012, pp.227-232.

DOI: 10.1109/carpathiancc.2012.6228644

Google Scholar

[6] A. Macurová and S. Hrehová, Some properties of the pneumatic artificial muscle expressed by the nonlinear differential equation, Advanced Materials Research, Vol. 658, 2013, pp.376-379.

DOI: 10.4028/www.scientific.net/amr.658.376

Google Scholar

[7] K. Kyoung, C. Diep and K. Young, Intelligent switching control of pneumatic artificial muscle manipulator, JSME International Journal Series, Vol.48, No.4, 2005, pp.657-667.

DOI: 10.1299/jsmec.48.657

Google Scholar

[8] M. Balara, Linear parametrically invariant servo system, Automatizace, Vol. 33, No. 11-12, 1990, pp.312-316.

Google Scholar

[9] B. Silágyi et al, State feedback design considering overexcitation, Periodica Polytechnica, Budapest, Vol. 50, No. 1- 2, 2006, pp.147-171.

Google Scholar

[10] L. Zboray, State control of DC drives. Electrical engineering, Electronics, Cybernetics, Bratislava: SAV, 1989.

Google Scholar

[11] A. Balara, The contribution to the enhancement of the computer aided methods of technology plant actuators movement,Príspevok ku zdokonaľovaniu metód počítačovej podpory pohybu aktuátorov technologických zariadení Dissertation work, Prešov: TU, 2011, 149 p.

Google Scholar

[12] M. Tóthová, J. Piteľ and J. Boržíková, Operating modes of pneumatic artificial muscle actuator, Applied Mechanics and Materials, Vol. 308, 2013, pp.39-44.

DOI: 10.4028/www.scientific.net/amm.308.39

Google Scholar

[13] M. Balara. The rotary actuators with pneumatic artificial muscles, Principia Cybernetica, Praha: ČVUT, 2007, 4 p.

Google Scholar

[14] I. Vojtko, M. Kočiško, M. Janák and V. Fečová, The new design of robot arm, Proceedings of the IEEE 11th International Symposium on Applied Machine Intelligence and Informatics (SAMI 2013), 2013, Herl'any, Košice: IEEE, 2013, p.53 – 56.

DOI: 10.1109/sami.2013.6480943

Google Scholar

[15] K. Židek and J. Šeminský, Automated rehabilitation device based on artificial muscles, Annals of DAAAM for 2011, Vienna: DAAAM International, 2011, pp.1113-1114.

DOI: 10.2507/22nd.daaam.proceedings.542

Google Scholar

[16] K. Židek, A. Hošovský and V. Maxim, Real-time safety circuit based on combined MEMS sensor data for rehabilitation device, Proceedings of the 2012 13th International Carpathian Control Conference (ICCC), Košice: IEEE, 2012, pp.786-790.

DOI: 10.1109/carpathiancc.2012.6228754

Google Scholar

[17] K. Židek, J. Piteľ, A Galajdová and M. Fodor, Rehabilitation device construction based on artificial muscle actuators, Proceedings of the Ninth IASTED International Conference: Biomedical Engineering BioMed 2012, 2012, Innsbruck: IEEE, pp.855-861.

DOI: 10.2316/p.2012.766-020

Google Scholar

[18] S. Šoltésová and P. Baron, The operation monitoring condition of the production machinery and facilities using the tools of technical diagnostics, Applied Mechanics and Materials, Vol. 308, 2013, pp.105-109.

DOI: 10.4028/www.scientific.net/amm.308.105

Google Scholar

[19] A. Hošovský and M. Havran, Dynamic modeling of one degree of freedom pneumatic muscle-based actuator for industrial applications, Tehnički Vjesnik, Vol. 3/19, 2012, pp.673-681.

Google Scholar

[20] A. Hošovský, J.N. Marcinčin, J. Piteľ, J. Boržíková and K. Židek, Model-based evolution of a fast hybrid fuzzy adaptive controller for a pneumatic muscle actuator, International Journal of Advanced Robotic Systems, Vol. 9 (56), 2012, pp.1-11.

DOI: 10.5772/50347

Google Scholar

[21] M. Balara, The upgrade methods of the pneumatic actuator operation ability, Applied Mechanics and Materials, Vol. 308, 2013, pp.63-68.

DOI: 10.4028/www.scientific.net/amm.308.63

Google Scholar