[1]
M. Balara, The linearised control system of the pneumatic actuator, Annals of DAAAM for 2011, Vienna: DAAAM International, 2011, pp.1251-1252.
DOI: 10.2507/22nd.daaam.proceedings.610
Google Scholar
[2]
R.C. Dorf and R.H. Bishop, Modern control systems, Addison-Wesley Publ. Company, 8. Edition, 1998, pp.109-145.
Google Scholar
[3]
S. Hrehová and A. Vagaská, Application of fuzzy principles in evaluating quality of manufacturing process, WSEAS Transaction on Power Systems, Vol. 7, No. 2, 2012, pp.50-59.
Google Scholar
[4]
D. Gabriška, G. Michaľčonok, P. Tanuška and T. Škulavík, Analysis of the compensation algorithm stability of disturbance for the phase control systems, Proceedings of 11th IFAC/IEEE International Conference on Programmable devices and embedded systems (PDeS 2012), Brno: IEEE, 2012, pp.100-104.
Google Scholar
[5]
A. Hošovský, K. Židek and C. Oswald, Hybridized GA-optimization of neural dynamic model for nonlinear process, Proceedings of the 2012 13th International Carpathian Control Conference (ICCC), Košice: IEEE, 2012, pp.227-232.
DOI: 10.1109/carpathiancc.2012.6228644
Google Scholar
[6]
A. Macurová and S. Hrehová, Some properties of the pneumatic artificial muscle expressed by the nonlinear differential equation, Advanced Materials Research, Vol. 658, 2013, pp.376-379.
DOI: 10.4028/www.scientific.net/amr.658.376
Google Scholar
[7]
K. Kyoung, C. Diep and K. Young, Intelligent switching control of pneumatic artificial muscle manipulator, JSME International Journal Series, Vol.48, No.4, 2005, pp.657-667.
DOI: 10.1299/jsmec.48.657
Google Scholar
[8]
M. Balara, Linear parametrically invariant servo system, Automatizace, Vol. 33, No. 11-12, 1990, pp.312-316.
Google Scholar
[9]
B. Silágyi et al, State feedback design considering overexcitation, Periodica Polytechnica, Budapest, Vol. 50, No. 1- 2, 2006, pp.147-171.
Google Scholar
[10]
L. Zboray, State control of DC drives. Electrical engineering, Electronics, Cybernetics, Bratislava: SAV, 1989.
Google Scholar
[11]
A. Balara, The contribution to the enhancement of the computer aided methods of technology plant actuators movement,Príspevok ku zdokonaľovaniu metód počítačovej podpory pohybu aktuátorov technologických zariadení Dissertation work, Prešov: TU, 2011, 149 p.
Google Scholar
[12]
M. Tóthová, J. Piteľ and J. Boržíková, Operating modes of pneumatic artificial muscle actuator, Applied Mechanics and Materials, Vol. 308, 2013, pp.39-44.
DOI: 10.4028/www.scientific.net/amm.308.39
Google Scholar
[13]
M. Balara. The rotary actuators with pneumatic artificial muscles, Principia Cybernetica, Praha: ČVUT, 2007, 4 p.
Google Scholar
[14]
I. Vojtko, M. Kočiško, M. Janák and V. Fečová, The new design of robot arm, Proceedings of the IEEE 11th International Symposium on Applied Machine Intelligence and Informatics (SAMI 2013), 2013, Herl'any, Košice: IEEE, 2013, p.53 – 56.
DOI: 10.1109/sami.2013.6480943
Google Scholar
[15]
K. Židek and J. Šeminský, Automated rehabilitation device based on artificial muscles, Annals of DAAAM for 2011, Vienna: DAAAM International, 2011, pp.1113-1114.
DOI: 10.2507/22nd.daaam.proceedings.542
Google Scholar
[16]
K. Židek, A. Hošovský and V. Maxim, Real-time safety circuit based on combined MEMS sensor data for rehabilitation device, Proceedings of the 2012 13th International Carpathian Control Conference (ICCC), Košice: IEEE, 2012, pp.786-790.
DOI: 10.1109/carpathiancc.2012.6228754
Google Scholar
[17]
K. Židek, J. Piteľ, A Galajdová and M. Fodor, Rehabilitation device construction based on artificial muscle actuators, Proceedings of the Ninth IASTED International Conference: Biomedical Engineering BioMed 2012, 2012, Innsbruck: IEEE, pp.855-861.
DOI: 10.2316/p.2012.766-020
Google Scholar
[18]
S. Šoltésová and P. Baron, The operation monitoring condition of the production machinery and facilities using the tools of technical diagnostics, Applied Mechanics and Materials, Vol. 308, 2013, pp.105-109.
DOI: 10.4028/www.scientific.net/amm.308.105
Google Scholar
[19]
A. Hošovský and M. Havran, Dynamic modeling of one degree of freedom pneumatic muscle-based actuator for industrial applications, Tehnički Vjesnik, Vol. 3/19, 2012, pp.673-681.
Google Scholar
[20]
A. Hošovský, J.N. Marcinčin, J. Piteľ, J. Boržíková and K. Židek, Model-based evolution of a fast hybrid fuzzy adaptive controller for a pneumatic muscle actuator, International Journal of Advanced Robotic Systems, Vol. 9 (56), 2012, pp.1-11.
DOI: 10.5772/50347
Google Scholar
[21]
M. Balara, The upgrade methods of the pneumatic actuator operation ability, Applied Mechanics and Materials, Vol. 308, 2013, pp.63-68.
DOI: 10.4028/www.scientific.net/amm.308.63
Google Scholar