[1]
S. Davis, N. Tsagarakis, J. Canderle, D. Caldwell, Enhanced Modelling and Performance in Braided Pneumatic Muscle Actuators, The International Journal of Robotics Research. Vol. 22, No. 3-4, 2003, pp.213-227.
DOI: 10.1177/0278364903022003006
Google Scholar
[2]
M. Balara, J. Piteľ, Pneumatický umelý sval - perspektívny prvok mechatroniky. (1), AT&P Journal, roč. 15, č. 12 (2008), s. 59-60. ISSN 1335-2237
Google Scholar
[3]
D. H. Plettenburg, Pneumatic Actuators: a Comparison of Energy-to-Mass Ratio's, in: Proceeding of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, June 28 – July 1, 2005. Chicago, 2005, pp.545-549.
DOI: 10.1109/icorr.2005.1502022
Google Scholar
[4]
R. Ramasamy, M. R. Jahari,M. R. Mamat, S. Yaacob, N. F. Mohdnasir, M. Sugisaka, An Application of Finite Element Modelling to Pneumatic Artificial Muscle, American Journal of Applied Sciences. Vol. 11, No. 2 (2005), pp.1504-1508.
DOI: 10.3844/ajassp.2005.1504.1508
Google Scholar
[5]
F. Daerden, D. Lefeber, Pneumatic Artificial Muscles: Actuators for robotics and automation, European Journal of Mechanical and Environmental Engineering. Vol. 47, No. 1 (2002), pp.11-21. ISSN 1371-6980
Google Scholar
[6]
J. Novák-Marcinčin, Artificial muscle as drive in automation manipulation Technology – doctoral thesis. Prešov: SjF TU, 1993. 208 s.
Google Scholar
[7]
B. Tondu, P. Lopez, Modelling and Control of McKibben Artificial Muscle Robot Actuators, IEEE Control systems Magazine, No. 4, pp.15-38
Google Scholar
[8]
C. P. Chou, B. Hannaford, Measurement and Modeling of Artificial Muscles, IEEE Transactions on Robotics and Automation, Vol. 12, 1996, pp.90-102
DOI: 10.1109/70.481753
Google Scholar
[9]
M. Balara, The Upgrade Methods of the Pneumatic Actuator Operation Ability, Applied Mechanics and Materials, Vol. 308 (2013), pp.63-68. ISSN 1660-9336
DOI: 10.4028/www.scientific.net/amm.308.63
Google Scholar
[10]
M. Balara, A. Vagaská, Torque of rotary actuator with artificial muscles. In: ARTEP, Košice : TU, 2013, s. 31-1-31-10. ISBN 978-80-553-1330-6
Google Scholar
[11]
Pneumatic artificial muscles (PAMs). Information on http://mech.vub.ac.be/multibody/topics/pam_sub.htm
Google Scholar
[12]
ROMAC, the pneumatic muscle. Information on http://cyberneticzoo.com/?p=6722
Google Scholar
[13]
J. M. Yarlott, Fluid Actuator, US Patent No. 3645 173, 1972.
Google Scholar
[14]
J. Boržíková, J. Piteľ, M. Tóthová, B. Šulc, Dynamic simulation model of PAM based antagonistic actuator, in: ICCC 2011, Velké Karlovice, s. l. : IEEE, 2011, pp.32-35. ISBN 978-1-61284-359-9
Google Scholar
[15]
L. Kopečný, F. Šolc, McKibben Pneumatic muscle in robotics, AT&P Journal. roč. X, č. 2, 2003, s. 62-64.
Google Scholar
[16]
A. Hošovský, J. Novák-Marcinčin, J. Piteľ, J. Boržíková, K. Židek, Model-based Evolution of a Fast Hybrid Fuzzy Adaptive Controller for a Pneumatic Muscle Actuator, in: International Journal of Advanced Robotic Systems, Vol. 9 (56) (2012), pp.1-11. ISSN 1729-8806
DOI: 10.5772/50347
Google Scholar
[17]
A. Hošovský, Numerical approximation of static characteristic of PAM-based antagonistic actuator, Journal of Applied Science in Thermodynamics and Fluid Mechanics, Vol. 1, no. 1 (2007), 4 p. ISSN 1802-9388
Google Scholar
[18]
A. Hošovský, Fuzzy approximator of the force-length-pressure relationship for a pneumatic artificial muscle, Annals of Faculty of Engineering Hunedoara, Vol. 6, no. 1 (2008), pp.93-100. ISSN 1584-2665
Google Scholar
[19]
A. Hošovský, Modeling of pneumatic artificial muscle static characteristic by system ANFIS, Strojárstvo extra. Č. 5 (2010), s. 23/1-23/5. ISSN 1335-2938
Google Scholar
[20]
Ľ. Straka, I. Čorný, R. Kreheľ, Evaluation of capability of measuring device on the basis of diagnostics, in: Applied Mechanics and Materials. Vol. 308 (2013), pp.69-74, ISSN 1660-9336
DOI: 10.4028/www.scientific.net/amm.308.69
Google Scholar
[21]
J. Boržíková, The deternination of analytic dependence of static characteristic of PAM-based antagonistic actuator, Acta Mechanica Slovaca, roč. 12, č. 1-A (2008), s. 227-230. ISSN 1335-2393
Google Scholar
[22]
M. Balara, J. Boržíková, Mathematical description of static characteristics of the actuator with two pneumatic muscles, in: Výrobné inžinierstvo, roč. 2, č. 4 (2003), s. 41-44. ISSN 1335-7972
Google Scholar
[23]
J. Boržíková, Modeling of static characteristics of actuator with pneumatic artifitial muscles, in: Trendy ve vzdělávání 2006. Olomouc : Votobia, 2006, pp.371-374. ISBN 807220260X
Google Scholar
[24]
S. Hrehová, A. Vagaská, Application of fuzzy principles in evaluating quality of manufacturing process, in: WSEAS Transaction on Power Systems, Vol. 7, no. 2 (2012), pp.50-59. ISSN 1790-5060
Google Scholar
[25]
A. Macurová, S. Hrehová, Some properties of the pneumatic artificial muscle expressed by the nonlinear differential equation, in: Advanced Materials Research, Vol. 658 (2013), pp.376-379. ISSN 1022-6680
DOI: 10.4028/www.scientific.net/amr.658.376
Google Scholar
[26]
J. Piteľ, M. Tóthová, Basic Models of Pneumatic Artificial Muscles, in: Systemnyj analiz, upravlenije i obrabotka informaciji, Divnomorskoje, Rostov-na-Donu : Izdavateľskij centr DGTU, 2012, pp.20-28. ISBN 978-5-7890-0730-3
Google Scholar
[27]
K. Židek, O. Líška, V. Maxim, Advanced rehabilitation device based on artificial muscle actuators with neural network implementation, Journal of automation, mobile robotics & inteligent Systems. Vol. 6, no. 3 (2012), pp.30-32. ISSN 1897-8649
Google Scholar
[28]
A. Hošovský, K. Židek, C. Oswald, Hybridized GA-optimization of neural dynamic model for nonlinear process, in: Proceedings of the 2012 13th International Carpathian Control Conference, ICCC 2012 , pp.227-232
DOI: 10.1109/carpathiancc.2012.6228644
Google Scholar
[29]
R. Shadmehr, S. P. Wise, The Computational Neurobiology of Reaching and Pointing. Supplementary Documents, 2005, p.595. ISBN 0-262-19508-9
Google Scholar
[30]
FESTO Fluidic Muscle Operating Instructions. Information on: <http://www.festo.com/rep/en-us_us/assets/pdf/MAS.pdf>
Google Scholar
[31]
J. Piteľ, M. Balara, I. Vojtko, Devices for pneumatic artificial muscle actuator measurement. Utility model no. 5969, Banská Bystrica : ÚPV SR, 2011, 6 s.
Google Scholar