Pneumatic Artificial Muscle as Actuator in Mechatronic System

Article Preview

Abstract:

The paper describes basic characteristics of pneumatic artificial muscles (PAM) for using as actuator in mechatronic system. The previous parameters research of individually connected artificial muscles shows, that it is significantly nonlinear system with time delay. Availing these results, problem of using of static and dynamic characteristics of PAMs for control and modeling electropneumatic mechatronic systems based on the artificial muscles occurs. To solve this problems, the paper also deals with design of some models.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

81-90

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Davis, N. Tsagarakis, J. Canderle, D. Caldwell, Enhanced Modelling and Performance in Braided Pneumatic Muscle Actuators, The International Journal of Robotics Research. Vol. 22, No. 3-4, 2003, pp.213-227.

DOI: 10.1177/0278364903022003006

Google Scholar

[2] M. Balara, J. Piteľ, Pneumatický umelý sval - perspektívny prvok mechatroniky. (1), AT&P Journal, roč. 15, č. 12 (2008), s. 59-60. ISSN 1335-2237

Google Scholar

[3] D. H. Plettenburg, Pneumatic Actuators: a Comparison of Energy-to-Mass Ratio's, in: Proceeding of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, June 28 – July 1, 2005. Chicago, 2005, pp.545-549.

DOI: 10.1109/icorr.2005.1502022

Google Scholar

[4] R. Ramasamy, M. R. Jahari,M. R. Mamat, S. Yaacob, N. F. Mohdnasir, M. Sugisaka, An Application of Finite Element Modelling to Pneumatic Artificial Muscle, American Journal of Applied Sciences. Vol. 11, No. 2 (2005), pp.1504-1508.

DOI: 10.3844/ajassp.2005.1504.1508

Google Scholar

[5] F. Daerden, D. Lefeber, Pneumatic Artificial Muscles: Actuators for robotics and automation, European Journal of Mechanical and Environmental Engineering. Vol. 47, No. 1 (2002), pp.11-21. ISSN 1371-6980

Google Scholar

[6] J. Novák-Marcinčin, Artificial muscle as drive in automation manipulation Technology – doctoral thesis. Prešov: SjF TU, 1993. 208 s.

Google Scholar

[7] B. Tondu, P. Lopez, Modelling and Control of McKibben Artificial Muscle Robot Actuators, IEEE Control systems Magazine, No. 4, pp.15-38

Google Scholar

[8] C. P. Chou, B. Hannaford, Measurement and Modeling of Artificial Muscles, IEEE Transactions on Robotics and Automation, Vol. 12, 1996, pp.90-102

DOI: 10.1109/70.481753

Google Scholar

[9] M. Balara, The Upgrade Methods of the Pneumatic Actuator Operation Ability, Applied Mechanics and Materials, Vol. 308 (2013), pp.63-68. ISSN 1660-9336

DOI: 10.4028/www.scientific.net/amm.308.63

Google Scholar

[10] M. Balara, A. Vagaská, Torque of rotary actuator with artificial muscles. In: ARTEP, Košice : TU, 2013, s. 31-1-31-10. ISBN 978-80-553-1330-6

Google Scholar

[11] Pneumatic artificial muscles (PAMs). Information on http://mech.vub.ac.be/multibody/topics/pam_sub.htm

Google Scholar

[12] ROMAC, the pneumatic muscle. Information on http://cyberneticzoo.com/?p=6722

Google Scholar

[13] J. M. Yarlott, Fluid Actuator, US Patent No. 3645 173, 1972.

Google Scholar

[14] J. Boržíková, J. Piteľ, M. Tóthová, B. Šulc, Dynamic simulation model of PAM based antagonistic actuator, in: ICCC 2011, Velké Karlovice, s. l. : IEEE, 2011, pp.32-35. ISBN 978-1-61284-359-9

Google Scholar

[15] L. Kopečný, F. Šolc, McKibben Pneumatic muscle in robotics, AT&P Journal. roč. X, č. 2, 2003, s. 62-64.

Google Scholar

[16] A. Hošovský, J. Novák-Marcinčin, J. Piteľ, J. Boržíková, K. Židek, Model-based Evolution of a Fast Hybrid Fuzzy Adaptive Controller for a Pneumatic Muscle Actuator, in: International Journal of Advanced Robotic Systems, Vol. 9 (56) (2012), pp.1-11. ISSN 1729-8806

DOI: 10.5772/50347

Google Scholar

[17] A. Hošovský, Numerical approximation of static characteristic of PAM-based antagonistic actuator, Journal of Applied Science in Thermodynamics and Fluid Mechanics, Vol. 1, no. 1 (2007), 4 p. ISSN 1802-9388

Google Scholar

[18] A. Hošovský, Fuzzy approximator of the force-length-pressure relationship for a pneumatic artificial muscle, Annals of Faculty of Engineering Hunedoara, Vol. 6, no. 1 (2008), pp.93-100. ISSN 1584-2665

Google Scholar

[19] A. Hošovský, Modeling of pneumatic artificial muscle static characteristic by system ANFIS, Strojárstvo extra. Č. 5 (2010), s. 23/1-23/5. ISSN 1335-2938

Google Scholar

[20] Ľ. Straka, I. Čorný, R. Kreheľ, Evaluation of capability of measuring device on the basis of diagnostics, in: Applied Mechanics and Materials. Vol. 308 (2013), pp.69-74, ISSN 1660-9336

DOI: 10.4028/www.scientific.net/amm.308.69

Google Scholar

[21] J. Boržíková, The deternination of analytic dependence of static characteristic of PAM-based antagonistic actuator, Acta Mechanica Slovaca, roč. 12, č. 1-A (2008), s. 227-230. ISSN 1335-2393

Google Scholar

[22] M. Balara, J. Boržíková, Mathematical description of static characteristics of the actuator with two pneumatic muscles, in: Výrobné inžinierstvo, roč. 2, č. 4 (2003), s. 41-44. ISSN 1335-7972

Google Scholar

[23] J. Boržíková, Modeling of static characteristics of actuator with pneumatic artifitial muscles, in: Trendy ve vzdělávání 2006. Olomouc : Votobia, 2006, pp.371-374. ISBN 807220260X

Google Scholar

[24] S. Hrehová, A. Vagaská, Application of fuzzy principles in evaluating quality of manufacturing process, in: WSEAS Transaction on Power Systems, Vol. 7, no. 2 (2012), pp.50-59. ISSN 1790-5060

Google Scholar

[25] A. Macurová, S. Hrehová, Some properties of the pneumatic artificial muscle expressed by the nonlinear differential equation, in: Advanced Materials Research, Vol. 658 (2013), pp.376-379. ISSN 1022-6680

DOI: 10.4028/www.scientific.net/amr.658.376

Google Scholar

[26] J. Piteľ, M. Tóthová, Basic Models of Pneumatic Artificial Muscles, in: Systemnyj analiz, upravlenije i obrabotka informaciji, Divnomorskoje, Rostov-na-Donu : Izdavateľskij centr DGTU, 2012, pp.20-28. ISBN 978-5-7890-0730-3

Google Scholar

[27] K. Židek, O. Líška, V. Maxim, Advanced rehabilitation device based on artificial muscle actuators with neural network implementation, Journal of automation, mobile robotics & inteligent Systems. Vol. 6, no. 3 (2012), pp.30-32. ISSN 1897-8649

Google Scholar

[28] A. Hošovský, K. Židek, C. Oswald, Hybridized GA-optimization of neural dynamic model for nonlinear process, in: Proceedings of the 2012 13th International Carpathian Control Conference, ICCC 2012 , pp.227-232

DOI: 10.1109/carpathiancc.2012.6228644

Google Scholar

[29] R. Shadmehr, S. P. Wise, The Computational Neurobiology of Reaching and Pointing. Supplementary Documents, 2005, p.595. ISBN 0-262-19508-9

Google Scholar

[30] FESTO Fluidic Muscle Operating Instructions. Information on: <http://www.festo.com/rep/en-us_us/assets/pdf/MAS.pdf>

Google Scholar

[31] J. Piteľ, M. Balara, I. Vojtko, Devices for pneumatic artificial muscle actuator measurement. Utility model no. 5969, Banská Bystrica : ÚPV SR, 2011, 6 s.

Google Scholar