[1]
T.A. Blanchet, S.S. Kandanur, L.S. Schadler, Coupled effect of filler content and countersurface roughness on PTFE nanocomposite wear resistance, Tribol. Lett. 40 (2010) 11-21.
DOI: 10.1007/s11249-009-9519-2
Google Scholar
[2]
J. Wang, K.H. Hu, Y.F. Xu, X.G. Hu, Structural, thermal, and tribological properties of intercalated polyoxymethylene/molybdenum disulfide nanocomposites, J. Appl. Polym. Sci. 110 (2008) 91-96.
DOI: 10.1002/app.28519
Google Scholar
[3]
S.S. Kim, M.W. Shin, H. Jang, Tribological properties of short glass fiber reinforced polyamide 12 sliding on medium carbon steel, Wear 274-275 (2012) 34-42.
DOI: 10.1016/j.wear.2011.08.009
Google Scholar
[4]
Y.K. Wang, L. Chen, Z.W. Xu, Effect of Various Nanoparticles on Friction and Wear Properties of Glass Fiber Reinforced Epoxy Composites, Adv. Mater. Res. 150-151 (2011) 1106-1109.
DOI: 10.4028/www.scientific.net/amr.150-151.1106
Google Scholar
[5]
T. Li, J. Tian, T. Huang, Z. Huang, H. Wang, R. Lu, P. Cong, Tribological Behaviors of Fluorinated Polyimides at Different Temperatures, J. Macromol. Sci. B 50 (2011) 860-870.
DOI: 10.1080/00222348.2010.497023
Google Scholar
[6]
B.B. Jia, T.S. Li, X.J. Liu, P.H. Cong, Tribological behaviors of several polymer–polymer sliding combinations under dry friction and oil-lubricated conditions, Wear 262 (2007) 1353-1359.
DOI: 10.1016/j.wear.2007.01.011
Google Scholar
[7]
A. Saito, H. Takahashi, The Influence of Filler Geometrical Shape on the Friction and Wear of Particle Filled Polymers, Sci. Eng. Compos. Mater. 6 (2011) 95-110.
DOI: 10.1515/secm.1997.6.2.95
Google Scholar
[8]
J.H. Kim, R.H. Kim, H.S. Kwon, Preparation of Copper Foam with 3-dimensionally Interconnected Spherical Pore Network by Electrodeposition, Electrochem. Commun. 10(8) (2008) 1148-1151.
DOI: 10.1016/j.elecom.2008.05.035
Google Scholar
[9]
Z.P. Chen, W.C. Ren, L.B. Gao, B.L. Liu, S.F. Pei, H.M. Cheng, Three-dimensional Flexible and Conductive Interconnected Graphene Networks Grown by Chemical Vapour Deposition, Nat. Mater. 10 (2011) 424-428.
DOI: 10.1038/nmat3001
Google Scholar
[10]
O. Sanz, F.J. Echave, M. Sanchez, A. Monzon, M. Montes, Aluminium Foams as Structured Supports for Volatile Organic Compounds (VOCs) Oxidation, Appl. Catal. A-Gen. 340(1) (2008) 125-132.
DOI: 10.1016/j.apcata.2008.02.007
Google Scholar
[11]
J.S. Wang, P. Liu, E. Sherman, M. Verbrugge, H. Tataria, Formulation and characterization of ultra-thick electrodes for high energy lithium-ion batteries employing tailored metal foams, J. Power Sources 196 (2011) 8714-8718.
DOI: 10.1016/j.jpowsour.2011.06.071
Google Scholar
[12]
J.L. Xu, X.B. Ji, W. Zhang, G.H. Liu, Pool Boiling Heat Transfer of Ultra-light Copper Foam with Open Cells, Int. J. of Multiphas. Flow 34(11) (2008) 1008-1022.
DOI: 10.1016/j.ijmultiphaseflow.2008.05.003
Google Scholar
[13]
S.T. Hong, D.R. Herling, Open-cell Aluminum Foams Filled with Phase Change Materials as Compact Heat Sinks, Scripta Mater. 55(10) (2006) 887-890.
DOI: 10.1016/j.scriptamat.2006.07.050
Google Scholar
[14]
T.E.G. Álvarez-Arenas, I.G. González, Spatial Normalization of the High-frequency Ultrasound Energy Loss in Open-cell Foams, Appl. Phys. Lett. 90 (2007) 201903.
DOI: 10.1063/1.2739076
Google Scholar
[15]
D.L. Burris, W.G. Sawyer, Hierarchically Constructed Metal Foam/Polymer Composite for High Thermal Conductivity, Wear 264(3-4) (2008) 374-380.
DOI: 10.1016/j.wear.2007.03.005
Google Scholar
[16]
J. Qu, P.J. Blau, J. Klett, B. Jolly, Sliding Friction and Wear Characteristics of Novel Graphitic Foam Materials, Tribol. Lett. 17(4) (2004) 879-886.
DOI: 10.1007/s11249-004-8096-7
Google Scholar
[17]
Y.J. Wang, Z.M. Liu, Tribological Properties of High Temperature Self-lubrication Metal Ceramics with an Interpenetrating Network, Wear 265(11-12) (2008) 1720-1726.
DOI: 10.1016/j.wear.2008.04.009
Google Scholar
[18]
K.J. Ji, W.G. Shan, Y.Q. Xia, Z.D. Dai, The Tribological Behaviors of Self-Lubricating Composites as Filler in Copper Foam, Tribol. T. 55(1) (2012) 20-31.
DOI: 10.1080/10402004.2011.622069
Google Scholar
[19]
O. Jacobs, W. Xu, B. Schädel, W. Wu, Wear behaviour of carbon nanotube reinforced epoxy resin composites, Tribol. Lett. 23 (2006) 65-75.
DOI: 10.1007/s11249-006-9042-7
Google Scholar
[20]
X. Li, Y. Gao, J. Xing, Y. Wang, L. Fang, Wear reduction mechanism of graphite and MoS2 in epoxy composites, Wear 257 (2004) 279-283.
DOI: 10.1016/j.wear.2003.12.012
Google Scholar
[21]
R.S. Ruo, D.C. Lorents, Mechanical and thermal properties of carbon nanotubes, Carbon, 33(7) (1995) 925-930.
DOI: 10.1016/0008-6223(95)00021-5
Google Scholar
[22]
F.H. Gojny, K. Schulte, Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites, Compos. Sci. Technol. 64 (2004) 2303-2308.
DOI: 10.1016/j.compscitech.2004.01.024
Google Scholar
[23]
A. Allaoui, S. Bai, H.M. Cheng, J.B. Bai, Mechanical and electrical properties of a MWNT/epoxy composite, Compos. Sci. Technol. 62 (2002) 1993-(1998).
DOI: 10.1016/s0266-3538(02)00129-x
Google Scholar
[24]
M. Bai, J.N. Chung, Analytical and numerical prediction of heat transfer and pressure drop in open-cell metal foams, Int. J. Therm. Sci. 50 (2011) 869-880.
DOI: 10.1016/j.ijthermalsci.2011.01.007
Google Scholar