[1]
M. Sfakiotakis, D. M. Lane, J. B. C. Davies, Review of fish swimming modes for aquatic locomotion, IEEE Journal of Oceanic Engineering, 1999, 24(2): 237–252.
DOI: 10.1109/48.757275
Google Scholar
[2]
Webb P. W. Form and Function in Fish Swimming. Scientific American. 1984, 251(1): 58–68.
Google Scholar
[3]
J. C. Liao, D. N. Beal, G. V. Lauder, and M. S. Triantafyllou, The Kármán gait: novel body kinematics of rainbow trout swimming in a vortex street, Journal of Experimental Biology, 206: 1059-1073, (2003).
DOI: 10.1242/jeb.00209
Google Scholar
[4]
F. E. Fish and G. V. Lauder, Passive and active flow control by swimming fishes and mammals, Annual Review of Fluid Mechanics, 38: 193-224, (2006).
DOI: 10.1146/annurev.fluid.38.050304.092201
Google Scholar
[5]
M. Bergmann and A. Iollo, Modeling and simulation of fish-like swimming, Journal of Computational Physics, 230: 329-348, (2011).
DOI: 10.1016/j.jcp.2010.09.017
Google Scholar
[6]
Z. Ren and K. Mohseni, A model of the lateral line of fish for vortex sensing, Bioinspiration & Biomimetics, 7, (2012).
DOI: 10.1088/1748-3182/7/3/036016
Google Scholar
[7]
H. Hu, J. Liu, I. Dukes, and G. Francis, Design of 3D Swim Patterns for Autonomous Robotic Fish, International Conference on Intelligent Robots and Systems, Beijing, China, (2006).
DOI: 10.1109/iros.2006.281680
Google Scholar
[8]
I. Borazjani and F. Sotiropoulos, Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes, Journal of Experimental Biology, 211: 1541-58, (2008).
DOI: 10.1242/jeb.015644
Google Scholar
[9]
A. A. Shirgaonkar, M. A. MacIver, and N. A. Patankar, A new mathematical formulation and fast algorithm for fully resolved simulation of self-propulsion, Journal of Computational Physics, 228: 2366-2390, (2009).
DOI: 10.1016/j.jcp.2008.12.006
Google Scholar
[10]
Y. Yang, G. Wu, Y. Yu, and B. Tong, Two-dimensional self-propelled fish motion in medium- an integrated method for deforming body dynamics and unsteady fluid dynamics, CHIN. PHYS. LETT., 25: 597-600, (2008).
DOI: 10.1088/0256-307x/25/2/066
Google Scholar
[11]
C. Wu and L. Wang, Numerical simulations of self-propelled swimming of 3D bionic fish school, Science in China Series E: Technological Sciences, 52: 658-669, (2009).
DOI: 10.1007/s11431-009-0064-x
Google Scholar
[12]
H. Zhou, T. Hu, H. Xie, D. Zhang, and L. Shen, Computational and experimental study on dynamic behavior of underwater robots propelled by bionic undulating fins, Science China Technological Sciences, 53: 2966-2971, (2010).
DOI: 10.1007/s11431-010-4146-6
Google Scholar
[13]
K. S. Yeo, S. J. Ang, and C. Shu, Simulation of fish swimming and manoeuvring by an SVD-GFD method on a hybrid meshfree-Cartesian grid, Computers & Fluids, 39: 403-430, (2010).
DOI: 10.1016/j.compfluid.2009.08.002
Google Scholar
[14]
L. YANG and Y. M. SU, CFD Simulation of Flow Features and Vorticity Structures in Tuna-Like Swimming, China Ocean Eng., 25: 73-82, (2011).
DOI: 10.1007/s13344-011-0006-9
Google Scholar
[15]
S. Alben, C. Witt, T. V. Baker, E. Anderson, and G. V. Lauder, Dynamics of freely swimming flexible foils, Physics of Fluids, 24: 051901, (2012).
DOI: 10.1063/1.4709477
Google Scholar
[16]
S. Kern and P. Koumoutsakos, Simulations of optimized anguilliform swimming, Journal of Experimental Biology, 209: 4841–4857, (2006).
DOI: 10.1242/jeb.02526
Google Scholar
[17]
M. I. Lamas, J. D. Rodriguez, C. G. Rodriguez, and P. B. Gonzalez, Three-dimensional CFD analysis to study the thrust and efficiency of a biologically inspired marine propulsor, Polish Maritime Research, 18: 10-16, (2011).
DOI: 10.2478/v10012-011-0002-2
Google Scholar
[18]
M. A. Rapo, H. Jiang, M. A. Grosenbaugh, and S. Coombs, Using computational fluid dynamics to calculate the stimulus to the lateral line of a fish in still water, Journal of Experimental Biology, 212: 1494-505, (2009).
DOI: 10.1242/jeb.026732
Google Scholar
[19]
P. Domenici and R. W. Blake, The kinematics and performance of fish fast-start swimming. Journal of Experimental Biology, 1997, 200: 1165–1178.
DOI: 10.1242/jeb.200.8.1165
Google Scholar
[20]
G. Wu, Y. Yang, and L. Zeng, Kinematics, hydrodynamics and energetic advantages of burst-and-coast swimming of koi carps (Cyprinus carpio koi), Journal of Experimental Biology, 210 : 2181-2191, (2007).
DOI: 10.1242/jeb.001842
Google Scholar