[1]
A. Shkolnik, M. Levashov, I.R. Manchester, et al, Bounding on rough terrain with the LittleDog robot, The International Journal of Robotics Research, 2011, 30(2): 192-215.
DOI: 10.1177/0278364910388315
Google Scholar
[2]
M. Raibert, K. Blankespoor, G. Nelson, et al, Bigdog, the rough-terrain quadruped robot, Proceedings of the 17th World Congress, 2008: 10823-10825.
DOI: 10.3182/20080706-5-kr-1001.01833
Google Scholar
[3]
M. Raibert, K. Blankespoor, G. Nelson, et al, the Big-Dog Team Bigdog, the rough-terrain quadruped robot. Proceedings of the 17th World Congress of the International Federation of Automatic Control, (2008).
DOI: 10.3182/20080706-5-kr-1001.01833
Google Scholar
[4]
C. Semini, N.G. Tsagarakis, B. Vanderborght, et al, HyQ-Hydraulically actuated quadruped robot: Hopping leg prototype, Biomedical Robotics and Biomechatronics, 2nd IEEE RAS & EMBS International Conference on, 2008: 593-599.
DOI: 10.1109/biorob.2008.4762913
Google Scholar
[5]
C. Semini, N.G. Tsagarakis, E. Guglielmino, et al, Design of HyQ–a hydraulically and electrically actuated quadruped robot. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2011, 225(6): 831-849.
DOI: 10.1177/0959651811402275
Google Scholar
[6]
W. Pengfei, S. Lining, The Stability Analysis for Quadruped Bionic Robot, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2006, Beijing: 5238-5243.
DOI: 10.1109/iros.2006.281665
Google Scholar
[7]
R. Brooks, A robust layered control system for a mobile robot. Robotics and Automation, IEEE Journal of, 1986, 2(1): 14-23.
DOI: 10.1109/jra.1986.1087032
Google Scholar
[8]
R. Brooks, New approaches to robotics. Science, 1991, 253(5025): 1227-1232.
DOI: 10.1126/science.253.5025.1227
Google Scholar
[9]
C. Ferrel, A comparison of three insect-inspired locomotion controllers. Robotics and Autonomous Systems, 1995, 16(2): 135-159.
DOI: 10.1016/0921-8890(95)00147-6
Google Scholar
[10]
H. Kimura, Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. Int J Robot Res, 2007, 26: 275–290.
Google Scholar
[11]
X.L. Zhang, Z. Haojun, G. Xu, et al, A biological inspired quadruped robot: structure and control. Robotics and Biomimetics (ROBIO), IEEE International Conference on. IEEE, 2005: 387-392.
DOI: 10.1109/robio.2005.246298
Google Scholar
[12]
W.J. Tian, Q. Cong, C. Menon, Investigation on the gait stability of German Shepherd Dogs for different locomotion, Journal of Bionic Engineering, 2011, 8(l): 18-24.
DOI: 10.1016/s1672-6529(11)60002-4
Google Scholar
[13]
R.B. Cai, Y.Z. Chen, L. Lin, et al, Inverse Kinematics of a New Quadruped Robot Control Method, Int J Adv Robotic Sy. 2013, 10(46).
Google Scholar
[14]
R.B. Cai, Y.Z. Chen, W.Q. Hou, et al, Trotting Gait of a Quadruped Robot Based on the Time-Pose Control Method, Int J Adv Robotic Sy. 2013, 10(148).
Google Scholar
[15]
J. Baillieul, Kinematic Programming Alternatives for Redundant Manipulators, Proc. Of IEEE Int. Conf. on Robotics and Automation. 1985, p.722–728.
DOI: 10.1109/robot.1985.1087234
Google Scholar