Dynamic Humanoid Gait Simulation of Biped Robot Based on ADAMS

Article Preview

Abstract:

During the design of biped robot HEUBR_1, a new structure of tandem and parallel connection is used in lower-limbs, adding toe-joints to feet. In order to make sure the rationality of humanoid structure design and feasibility of the humanoid gait planning, we built the simulating model of biped robot HEUBR_1 by using software ADAMS. The simulating model of biped robot HEUBR_1 walked stably with toe-joints in fictitious surrounding, which used the motion data exported by humanoid gait planning. During humanoid gait simulation, the biped robot kinematic and dynamical characteristics were achieved. Simulation indicates that the structure of tandem and parallel connection is rational and the method of humanoid gait planning is feasible. Humanoid walking with toe-joints has the characteristic: balanced motion, lower energy and small impact on feet. Simulated data of steady walking will be used as reference for biped robot HEUBR_1 walking experiments.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

894-902

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins, Footstep planning for the Honda ASIMO humanoid. Proceedings of the IEEE International Conference on Robotics and Automation. 2005: 629-634.

DOI: 10.1109/robot.2005.1570188

Google Scholar

[2] M. Hirose, K. Ogawa, Honda humanoid robots development, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2007, 365(1850): 11-19.

DOI: 10.1098/rsta.2006.1917

Google Scholar

[3] I. W. Park, J. Y. Kim, J. Lee, J. H. Oh, Mechanical design of the humanoid robot platform, HUBO. Advanced Robotics. 2007, 21(11): 1305-1322.

DOI: 10.1163/156855307781503781

Google Scholar

[4] G. Endo, J. Nakanishi, J. Morimoto, G. Cheng, Experimental studies of a neural oscillator for biped locomotion with QRIO. Proceedings of the IEEE International Conference on Robotics and Automation. 2005: 596-602.

DOI: 10.1109/robot.2005.1570183

Google Scholar

[5] L. Geppert, QRIO, the robot that could, IEEE Spectrum. 2004, 41(5): 34-37.

Google Scholar

[6] K. Nishiwaki, S. Kagami, Y. Kuniyoshi, M. Inaba, H. Inoue, Toe joints that enhance bipedal and fullbody motion of humanoid robots, Proceedings of the IEEE International Conference on Robotics and Automation. 2002: 3105-3110.

DOI: 10.1109/robot.2002.1013704

Google Scholar

[7] S. Kagami, M. Mochimaru, Y. Ehara, N. Miyata, K. Nishiwaki, T. Kanade, H. Inoue, Measurement and comparison of humanoid H7 walking with human being, Robotics and Autonomous Systems. 2004, 48(4): 177-187.

DOI: 10.1016/j.robot.2004.07.006

Google Scholar

[8] X. J. Zhao, Q. Huang, Z. Q. Peng, L. G. Zhang, K. J. Li, Kinematics mapping of humanoid motion based on human motion. Robotics. 2005, 27(4): 358-361.

Google Scholar

[9] H. Lim, A. Takanishi, Biped walking robots created at Waseda University: WL and WABIAN family. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2007, 365(1850): 49-64.

DOI: 10.1098/rsta.2006.1920

Google Scholar

[10] P. Sardain, G. Bessonnet, Forces acting on a biped robot. Center of pressure-zero moment point, IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans. 2004, 34(5): 630-637.

DOI: 10.1109/tsmca.2004.832811

Google Scholar

[11] W. Schiehlen, Energy-optimal design of walking machines, Multi-body System Dynamics. 2005, 13(1): 129-141.

DOI: 10.1007/s11044-005-4068-4

Google Scholar

[12] F. Kanehiro, H. Hirukawa, S. Kajita, OpenHRP: Open architecture humanoid robotics platform, The International Journal of Robotics Research. 2004, 23(2): 155-165.

DOI: 10.1177/0278364904041324

Google Scholar

[13] Q. Huang, Y. Nakamura, H. Arai, Development of a biped humanoid simulator, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. 2000: 1936-(1942).

DOI: 10.1109/iros.2000.895254

Google Scholar

[14] Q. Huang, Planning walking patterns for a biped robot. IEEE Transactions on Robotics and Automation. 2001, 17(3): 280-289.

DOI: 10.1109/70.938385

Google Scholar

[15] Z. Yu, L. Wang, J. Han, Walking stability in bipedal robots, Joumal of Harbin Engineering University. 2009, 30(11): 1285-1290.

Google Scholar

[16] L. Wang, Z. Yu, Experimental Study and Prototype Development of Biped Robot HEUBR_1, Robot. 2009, 31(5): 453-459.

Google Scholar