A Novel LLR-BP Algorithm for LDPC Codes Based on Taylor Series and Least Squares

Article Preview

Abstract:

An effective log-likelihood-ratio-based belief propagation (LLR-BP) algorithm is proposed. It can reduce computational complexity of decoding algorithm for Low Density Parity Check (LDPC) codes. By using the Taylor series and least squares, high order multiplication based on the hyperbolic tangent (tanh) rule is converted to a first-order multiplication and addition after simplification. Moreover, all the logarithmic and exponential operations disappear without significant loss of the decoding performance. The simulation results show that the performance of the proposed scheme is similar to the general LLR-BP. In particular, we show that the modified algorithm with low complexity can achieve better BER than the other decoding algorithm in high signal-to-noise ratio region.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

193-197

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. G. Gallager, Low density parity check codes, IRE Trans. Inform. Theory, vol. IT-8, p.21–28, Jan. (1962).

DOI: 10.1109/tit.1962.1057683

Google Scholar

[2] D. J. C. MacKay, Good error-correcting codes based on very sparse matrices, IEEE Trans. Inform. Theory, vol. 45, p.399–432, Mar. (1999).

DOI: 10.1109/18.748992

Google Scholar

[3] Tanner, R. M, A recursive approach to low complexity codes, IEEE Trans. Inform. Theory, 1981, 27, (5), p.533– 547.

DOI: 10.1109/tit.1981.1056404

Google Scholar

[4] S. Y. Chung, G. D. Forney, Jr, T. J. Richardson, and R. Urbanke. On the design of low-density parity-check codes within 0. 0045 dB of the Shannon limit,, IEEE Commun. Lett , vol. 5, pp.58-60, Feb. (2001).

DOI: 10.1109/4234.905935

Google Scholar

[5] Zengyou Sun, Jin Zhang, Juan Du, Research of LDPC Decoding Based on LLR BP Algorithm, Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), vol. 2, 2011, p.889 – 892.

DOI: 10.1109/csqrwc.2011.6037098

Google Scholar

[6] Laouini, N, Ben. Hadj. Slama, L, Bouallegue,A. Fast decoding of low density parity check codes, High Capacity Optical Networks and Enabling Technologies (HONET), 2012, pp: 052 – 056.

DOI: 10.1109/honet.2012.6421434

Google Scholar

[7] J. Chen, A. Dholakia, E. Eleftheriou, M.P.C. Fossorier, Reduced complexity decoding of LDPC codes, IEEE Trans. Commun. USA, vol. 53, no. 8, pp.1288-1299, Aug. (2005).

DOI: 10.1109/tcomm.2005.852852

Google Scholar

[8] Papaharalabos, S., Sweeney, P., Evans, B. G, Albertazzi, G. Vanelli-Coralli, A., and Corazza, G.E. Performance evaluation of a modified sum-product decoding algorithm for LDPC codes, Proc. 2nd Int. Symp. Wireless Commun. Systems (ISWCS), Siena, Italy, p.800–804, Sep. (2005).

DOI: 10.1109/iswcs.2005.1547819

Google Scholar

[9] S. Howard, C. Schlegel, and V. Gaudet. A degree-matched check node approximation for LDPC decoding, In Proceedings of the IEEE intl. Symposium on Information Theory, ISIT, Adelaide, Australia, pp.4-9, (2005).

DOI: 10.1109/isit.2005.1523516

Google Scholar

[10] A, Reza, Banihashemi, Amir,H., A. Mahmoud, S. Hamid, LLR Approximation for Wireless Channels Based onTaylor Series and its Application to BICM With LDPC Codes, Transactions, 2012, 60, (5). pp: 1226-1236.

DOI: 10.1109/tcomm.2012.030712.110142

Google Scholar

[11] Ying Wang, Lei Xie, Huifang Chen, Kuang Wang, Improved Decoding Algorithm of Bit-Interleaved Coded Modulation for LDPC Code, IEEE Trans. Broadcasting. pp.103-109, Mar. (2010).

DOI: 10.1109/tbc.2009.2036950

Google Scholar