Change-Points Detections for Interrupted Time Series Analysis: A Literature Review

Article Preview

Abstract:

General review of Change-Points detection methods applied in Interrupted Time Series Analysis for recent years. Articles from domains like meteorology, hydrology, stock analysis, sequences mining et al. are compared together. The literatures range from the 1980s to 2013. The methods are generally classified in Parametric, Semi-Parametric, and Nonparametric. Some non-statistical methods are also mentioned in this review. Characters of each method are briefly summarized. As all methods mentioned in this review share a common purpose that to detect change-points, most of them can be used in other domains after some proper adjustment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

187-192

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Yue and C. Wang: The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series: Water Resouces Management, Vol. 18 (2004), pp.201-218.

DOI: 10.1023/b:warm.0000043140.61082.60

Google Scholar

[2] R. Lund and J. Reeves: Detection of Undocumented Changepoints: A Revision of the Two-Phase Regression Model: J. Climate, Vol. 15-17(2002), pp.2547-2554.

DOI: 10.1175/1520-0442(2002)015<2547:doucar>2.0.co;2

Google Scholar

[3] H.B. Mann: Nonparametric tests against trend: Econometrica, Vol. 13(1945), pp.245-259.

DOI: 10.2307/1907187

Google Scholar

[4] F. Osorio and M. Galea: Detection of a change-point in student-t linear regression models: Statistical Papers, Vol. 45 (2005), pp.31-48.

DOI: 10.1007/s00362-005-0271-x

Google Scholar

[5] E. S. Page: Cumulative sum schemes using gauging: Technometrics, Vol. 4-1(1962), pp.97-109.

DOI: 10.1080/00401706.1962.10489990

Google Scholar

[6] T. L. Lai: Sequential Changepoint Detection in Quality Control and Dynamical Systems: J. R. Statist. Soc. B, Vol. 57-4 (1995), pp.613-658.

Google Scholar

[7] D. Siegumund and E. S. Venkatraman: Using The Generalized Likelihood Ratio Statistic for Sequential Detection of a Change-Point: The Annals of Statistics, Vol. 23-1(1995), pp.255-271.

DOI: 10.1214/aos/1176324466

Google Scholar

[8] A. R. Solow: Testing for Climate Change: An Application of the Two-Phase Regression Model: J. Climate Appl. Meteor, 26 (1987), 1401–1405.

DOI: 10.1175/1520-0450(1987)026<1401:tfccaa>2.0.co;2

Google Scholar

[9] Z. Guan: Semiparametric tests for change-points with epidemic alternatives: Journal of Statistical Planning and Inference, Vol. 137(2007), pp.1748-1764.

DOI: 10.1016/j.jspi.2006.05.006

Google Scholar

[10] B. Cai, Andrew B Lawson, Suzanne McDermott et al.: A Bayesian semi-parametric approach with change points for spatial ordinal data: Statistical Methods in Medical Research, Vol. 0-0(2012), pp.1-15.

DOI: 10.1177/0962280212463415

Google Scholar

[11] B. Brodsky and B. Darkhovsky: Asymptotically optimal methods of change-point detection for composite hypotheses: Journal of Statistical Planning and Inference: Vol. 133(2005), pp.123-138.

DOI: 10.1016/j.jspi.2004.01.007

Google Scholar

[12] P. Yang, G. Dumont and J. Lim et al.: Adaptive Change Point Detection for Respiratory Variables: 27th Annual International Conference of the. IEEE (2005), pp.780-783.

DOI: 10.1109/iembs.2005.1616531

Google Scholar

[13] D. C. Carslaw, K. Ropkins and M. C. Bell: Change-Point Detection of Gaseous and Particulate Traffic-Related Pollutants at a Roadside Location: Environ. Sci. Technol. Vol. 40 (2006), pp.6912-6918.

DOI: 10.1021/es060543u

Google Scholar

[14] B. Brodsky and B. Darkhovsky: Sequential change-point detection for mixing random sequences under composite hypotheses: Statistical Inference for Stochastic Processes, Vol. 11-1 (2008), pp.35-54.

DOI: 10.1007/s11203-006-9004-6

Google Scholar

[15] V. M. De Oca, D. R. Jeske, Q. Zhang et al.: A cusum change-point detection algorithm for non-stationary sequences with application to data network surveillance: The Journal of Systems and Software, Vol. 83(2010), pp.1288-1297.

DOI: 10.1016/j.jss.2010.02.006

Google Scholar

[16] M.G. Kendall: Rank Correlation Methods (Charles Griffin & Company published, London 1970).

Google Scholar

[17] K. H. Hamed and A. R. Rao: A modified Mann-Kendall trend test for autocorrelated data: Journal of Hydrology, Vol. 204 (1998), pp.182-196.

DOI: 10.1016/s0022-1694(97)00125-x

Google Scholar

[18] S. Yue, P. Pilon and G. Cavadias: Power of the Mann-Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series: Journal of Hydrology, Vol. 259 (2002), pp.254-271.

DOI: 10.1016/s0022-1694(01)00594-7

Google Scholar

[19] G. Chattopadhyay, P. Chakraborthy and S. Chattopadhyay: Mann-Kendall trend analysis of tropospheric ozone and its modeling using ARIMA: Theor Appl. Climatol, Vol. 110 (2012), pp.321-328.

DOI: 10.1007/s00704-012-0617-y

Google Scholar

[20] M. Shadmani, S. Marofi and M. Roknian: Trend Analysis in Reference Evapotranspiration Using Mann-Kendall and Spearman's Rho Tests in Arid Regions of Iran: Water Resour Manage, Vol. 26 (2012), pp.211-224.

DOI: 10.1007/s11269-011-9913-z

Google Scholar

[21] M. Gocic and S. Trajkovic: Analysis of changes in meteorological variables using Mann-Kendall and Sen's slope estimator statistical tests in Serbia: Global and Planetary change, Vol. 100 (2013), pp.172-182.

DOI: 10.1016/j.gloplacha.2012.10.014

Google Scholar

[22] R. L. Carter and B. J. N. Blight: A Bayesian Change-Point Problem with an Application to the Prediction and Detection of Ovulation in Women: Biometrics, Vol. 37 (1981), pp.743-751.

DOI: 10.2307/2530156

Google Scholar

[23] B.K. Ray and R.S. Tsay: Bayesian methods for change-point detection in long-range dependent processes: Journal of Time Series Analysis, Vol. 23-6(2002), pp.687-705.

DOI: 10.1111/1467-9892.00286

Google Scholar

[24] D. Leonte, D. J. Nott and W. T. M. Dunsmuir: Smoothing and Change Point Detection for Gamma Ray Count Data: Mathematical Geology, Vol. 35-2 (2003), pp.175-194.

Google Scholar

[25] P. Muller and F. A. Quintana: Nonparametric Bayesian Data Analysis: Statistical Science, Vol. 19-1 (2004), pp.95-110.

Google Scholar

[26] Y. S. Son and S. W. Kim: Bayesian single change point detection in a sequence of multivariate normal observations: Statistics, Vol. 39-5 (2005), pp.373-387.

DOI: 10.1080/02331880500315339

Google Scholar

[27] E. Ruggieri: A Bayesian approach to detecting change points in climatic records: Int. J. Climatol. , Vol. 33 (2013), pp.520-528.

DOI: 10.1002/joc.3447

Google Scholar

[28] A. Jann: Multiple Change-Point Detection with a Genetic Algorithm: Soft Computing, Vol. 4 (2000), pp.68-75.

DOI: 10.1007/s005000000049

Google Scholar

[29] Y. Tseng, P. Durbin and G. Tzeng: Using a Fuzzy Piecewise Regression Analysis to Predict the Nonlinear Time-Series of Turbulent Flows with Automatic Change-Point Detection: Flow, Turbulence and Combustion, Vol. 67 (2001), pp.81-106.

DOI: 10.1023/a:1014077330409

Google Scholar

[30] Y. Kawahara, T. Yairi, and K. Machida: Change-Point Detection in Time-Series Data based on Subspace Identification: Seventh IEEE International Conference on. IEEE, (2007), pp.559-564.

DOI: 10.1109/icdm.2007.78

Google Scholar

[31] M. Fliess, C. Join and M. Mboup: Algebraic Change-Point Detection: AAECC, Vol. 21 (2010), pp.131-143.

DOI: 10.1007/s00200-010-0119-z

Google Scholar