Review of Odor Source Localization Robot Based on Bionic Olfaction

Article Preview

Abstract:

This paper summarizes some current typical odor source localization strategies and algorithms. And their advantages and disadvantages are pointed out. Some typical olfactory robots and achievements are listed. It is pointed out that the current questions of odor source localization robot based on bionic olfaction are how to build an accurate gas diffusion model and combining multi-information technology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

750-754

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Shurmer H, Fard A, J Baker, P. Bartlett, G. Dodd, U. Hayat. Development of an Electronic Nose [J]. Physics in technology, 1987, Vol. 18(4): 170-176.

DOI: 10.1088/0305-4624/18/4/i04

Google Scholar

[2] Univ of Warwick, United Kindom. Electronic nose. A sensitive and discriminating substitute for a mammalian olfactory system [J]. IEE proceedings. Part G. Electronic circuits and systems, 1990, Vol. 137(3): 197-204, ISSN: 01437089.

DOI: 10.1049/ip-g-2.1990.0030

Google Scholar

[3] Matthes J, Groll L, Hubert B K. Optimal weighting of networked electronic noses for the source localization [J]. Proceedings of the 2005 Systems Communications, (2005).

DOI: 10.1109/icw.2005.64

Google Scholar

[4] Chen Liwei, Yang Jianhua. Experimental Study on Odor Source Localization System Based on Metal Oxide Gas Sensors [J]. IEEE Third International Conference on Measuring Technology Mechatronics Automation, 2011, 3(23): 143-146.

DOI: 10.1109/icmtma.2011.5767266

Google Scholar

[5] Belanger J. H, Willis M.A. Biologically-inspired search algorithms for locating unseen odor sources [C]. Proceeding of the 1998 IEEE ISIC/CIRNISAS Joint Conference. Garthersburg: [s, n], 1998; 265-270.

DOI: 10.21236/ada402125

Google Scholar

[6] Moriizumi T, Ishida H. Robotic systems to track chemical plumes [M]. USA: IEEE, 2002: 537-540.

Google Scholar

[7] Rozas R, Morales J, Vega D. Artificial smell detection for robotic navigation. In: Fifth International Conference on Advanced Robotics, 1997: 1730-1733.

DOI: 10.1109/icar.1991.240354

Google Scholar

[8] Ishida H, Nakamoto T, Moriizumi T. Fundamental study of mobile system for smelling object localization using plural gas sensor [C]. Proceedings of the 32nd SICE Annual Conference. Kanazawa: IEEE Industrial Electrics Society, 1993: 767-768.

Google Scholar

[9] Ishida H, Suetsugu K, Nakamoto T, et al. Study of autonomous mobile sensing system for localization of odor source using gas sensors and anemometric sensors [J]. Sensors and Actuators, 1994, 45(2): 153-157.

DOI: 10.1016/0924-4247(94)00829-9

Google Scholar

[10] Ishida H, Nakamoto T, Moriizumi T. Remote sensing and localization of gas/odor source and distribution using mobile sensing system [C]. International Conference on Solid-state Sensors and Actuators, 1997, 559-562.

DOI: 10.1109/sensor.1997.613711

Google Scholar

[11] Nakamoto T, Ishida H, Moriizumi T. Active odor sensing system [C]. Proceeding of the IEEE International Symposium on Industrial Electronics, 1997, 128-133.

DOI: 10.1109/isie.1997.651748

Google Scholar

[12] Ishida H, Nakamoto T, Moriizumi T. Remote sensing of gas/odor source location and concentration distribution using mobile system [J]. Sensors and Actuators, 1998, 52-57.

DOI: 10.1016/s0925-4005(98)00036-7

Google Scholar

[13] Ishida H, Kobayashi A, Nakamoto T, et al. Three-dimensional odor compass. IEEE Transactions on Robotics and Aytomation, 1999, 15(2): 251-257.

DOI: 10.1109/70.760346

Google Scholar

[14] Ishida H, Yoshikawa K, Moriizumi T. Three-Dimensional Gas-Plume Tracking Using Gas Sensors and Ultrasonic Anemometer [C]. Proceedings of the IEEE Sensors 2004, 1175-1178.

DOI: 10.1109/icsens.2004.1426387

Google Scholar

[15] Ishida H, Tanaka H, Taniguchi H, et al. Mobile robot navigation using vision and olfaction to search for a gas/odor source [J]. Autonomous Robots, 2006, Vol. 20(3): 231-238.

DOI: 10.1007/s10514-006-7100-5

Google Scholar

[16] Ishida H, Kohnotoh A. Active stereo olfactory sensing system for localization of gas/odor source [C]. Proceedings-7th International Conference on Machine Learning and Applications, 2008, 476-481.

DOI: 10.1109/icmla.2008.101

Google Scholar

[17] Ohashi M, Enomoto S, Ishida H. Actively generated flow field helps a crayfish robot collect chemical signals [J]. ECS Transactions, 2009, Vol. 19 (6): 337-341.

DOI: 10.1149/1.3118570

Google Scholar

[18] Russell R A. Odor sensing robot draws inspiration from the insect world [C]. Proceedings of the IEEE International Conference on Bioelectromagnetism, 1998: 49-50.

DOI: 10.1109/icbem.1998.666389

Google Scholar

[19] Russell R A. Ant trails-an example for robots to follow? [C]. Proceedings of the IEEE International Conference on Robotics and Automation, 1999: 2698-2703.

DOI: 10.1109/robot.1999.774005

Google Scholar

[20] Russell R A. Chemical Source Location and the RoboMole Project [C]. Australasian Conference on Roboticsand Automation, (2003).

Google Scholar

[21] Hayes A T, Martinoli A, Goodman R M. Swarm robotic odor localization [C]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001: 1073-1078.

DOI: 10.1109/iros.2001.976311

Google Scholar

[22] Hayes A T, Martinoli A, Goodman R M. Distributed odor source localization [J]. IEEE Sensors Journal, 2002, Vol. 2(3): 260-271.

DOI: 10.1109/jsen.2002.800682

Google Scholar

[23] Lilienthal A, Duckett T. Creating gas concentration gridmaps with a mobile robot [C]. IEEE International Conference on Intelligent Robots and Systems, 2003: 118-123.

DOI: 10.1109/iros.2003.1250615

Google Scholar

[24] Lilienthal A, Duckett T. Experimental Analysis of Smelling Braitenberg Vehicles. In: Proceedings of the IEEE International Conference on Advanced Robotics (ICAR 2003). Coimbra, Portugal, 2003: 39-43.

Google Scholar

[25] Lilienthal A, Duckett T. Building gas concentration gridmaps with a mobile robot [J]. Robotics and Autonomous Systems, 2004, Vol. 48(1): 3-16.

DOI: 10.1016/j.robot.2004.05.002

Google Scholar

[26] Amy L, Mathias B, Silvia C, et al. Object recognition: A new application for smelling robots [J]. Robotics and Autonomous Systems, 2005, (52): 272-289.

DOI: 10.1016/j.robot.2005.06.002

Google Scholar

[27] Pawel P, Sergi B, Ulysses B, et al. An artificial moth: Chemical source localization using a robot based neuronal model of moth optomotor anemotactic search [J]. Autonomous Robot, 2006, (20): 197-213.

DOI: 10.1007/s10514-006-7101-4

Google Scholar

[28] Gabbiani F, Krapp H G, Koch C, Laurent G. Multiplicative computation in a visual neuron sensitive to looming [J]. Nature, 2002, 420(6913): 320-324.

DOI: 10.1038/nature01190

Google Scholar

[29] Jatmiko W, Ikemoto Y, Matsuno T, Fukuda T, Sekiyama K. Distributed odor source localization in dynamic environment [C]. Proceedings of IEEE Sensors, 2005: 254-257.

DOI: 10.1109/icsens.2005.1597684

Google Scholar

[30] Jatmiko W, Sekiyama K, Fukuda T. A mobile robots PSO-based for odor source localization in dynamic advection-diffusion environment [C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 2006: 4527-4532.

DOI: 10.1109/iros.2006.282092

Google Scholar

[31] Jatmiko W, Sekiyama K, Fukuda T. A PSO-based mobile robot for odor source localization in dynamic advection-diffusion with obstacle environment: theory, simulation and measurement [J]. IEEE Computational Intelligence Magazine, 2007, 2(2): 37-51.

DOI: 10.1109/mci.2007.353419

Google Scholar