Restrained Shrinkage Ring Test on Polymer Fibres Treated in Cold Plasma Discharge

Article Preview

Abstract:

The paper refers to utilization of low temperature plasma discharge in air on polypropylene fibres. Such fibres have been tested in concrete as reinforcement. The effect has been tested by restrain ring test. The experiment proved positive correlation between time of exposure and cracks suppression. The effect is considered as improved cohesion of polymer fibres with cement matrix.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-30

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Zhemg, D. Feldman, Synthetic fibre-reinforced concrete, Journal Progress in polymer science, volume 20, Issue 2, 1995, pp.185-210.

Google Scholar

[2] R. Brown, A. Shukla, K.R. Natarajan, Fibre reinforcement of concrete structures, University of Rhode Island transportation centre, September (2002).

Google Scholar

[3] LI Bei-Xing, The mechanical properties of polypropylene fibre reinforced concrete, Journal of Wuhan University of Technology – Mater, Sci. Ed., No. 19-3, 2004, pp.68-71.

DOI: 10.1007/bf02835065

Google Scholar

[4] Hager, I. Tracz, T. Influence of elevated temperature on selected properties of high performance concrete modified with the addition of polypropylene fibres , CEMENT WAPNO BETON, Volume: 14 Issue: 1 Pages: 3-+ Published: JAN-FEB (2009).

Google Scholar

[5] Pistol, K., Weise, F., Meng, B. Polypropylen-Fasern in Hochleistungsbetonen Wirkungsmechanismen im Brandfall, Beton- und Stahlbetonbau, Volume 107, Issue 7, pages 476–483, July (2012).

DOI: 10.1002/best.201200024

Google Scholar

[6] Zeiml, M; Leithner, D Lackner, R ; Mang, HA , How do polypropylene fibers improve the spalling behavior of in-situ concrete? CEMENT AND CONCRETE RESEARCH Volume: 36 Issue: 5 Pages: 929-942 Published: MAY (2006).

DOI: 10.1016/j.cemconres.2005.12.018

Google Scholar

[7] S. SINGH, A. SHUKLA, R. BROWN, Pullout behaviour of polypropylene fibres from cementitious matrix, Journal Cement and Concrete Research, volume 34, 2004, p.1919–(1925).

DOI: 10.1016/j.cemconres.2004.02.014

Google Scholar

[8] http: /ec. europa. eu/environment/chemicals/reach/reach_intro. htm [20. 12. 2010].

Google Scholar

[9] Q.F. Wei, Surface characterization of plasma-treated polypropylene fibres. Journal of Materials Characterization, volume 52, 2004, p.231– 235.

DOI: 10.1016/j.matchar.2004.05.003

Google Scholar

[10] P. Slepička, Argon plasma irradiation of polypropylene, Journal Nuclear Instruments and Methods in Physics Research B, Volume 268, Issues 11-12, June 2010, pp.2111-2114.

DOI: 10.1016/j.nimb.2010.02.012

Google Scholar

[11] B. Felekoglu, K. Tosun, B. Baradan, A comparative study on the flexural performance of plasma treated polypropylene fibre reinforced cementitious composites, Journal of Materials Processing Technology, volume 209, 2009, p.5133–5144.

DOI: 10.1016/j.jmatprotec.2009.02.015

Google Scholar

[12] C. Zhang, V.S. Gopalaratnam, H. K. Yasuda, Plasma treatment of polymeric fibres for improved performance in cement matrices. Journal of Applied Polymer Science, Volume 76, 2000, p.1985–(1996).

DOI: 10.1002/(sici)1097-4628(20000628)76:14<1985::aid-app1>3.0.co;2-g

Google Scholar

[13] M. Simor,J. Rahel,P. Vojtek, et al., Atmospheric-pressure diffuse coplanar surface discharge for surface treatments, APPLIED PHYSICS LETTERS 81 (15), OCT 7 2002, pp.2716-2718.

DOI: 10.1063/1.1513185

Google Scholar

[14] M. Černák, L. Černáková, I. Hudec, D. Kováčik, A. Zahoranová, Diffuse Coplanar Surface Barrier Discharge and its applications for in-line processing of low-added-value materials, The European Physical Journal Applied Physics 47, 2009, pp.1-6.

DOI: 10.1051/epjap/2009131

Google Scholar

[15] M. Černák, Method and apparatus for treatment of textile materials, European patent No. 1 387 901 (received 31. 10. 2007).

Google Scholar

[16] M. Černák, Application and equipment for treatment of textile materials, Czech patent No. 300 574 (received 2009).

Google Scholar

[17] M. Černák, J. Ráhel, Apparatus and treatment method of wood surfaces, wood fibres and wooden, WO2008085139 (patent pending).

Google Scholar

[18] www. pegas. cz.

Google Scholar

[19] Kopkáně, D.; Bodnárová, L.; Hela, R.; Petránek, V.; Sťahel, P.; Černák, M. Diffuse coplanar surface barrier discharge for enhance cohesion of polypropylene fibers. in 2nd wta- international phd symposium. WTA Publications, 2011. s. 336-343. ISBN: 978-3-937066-21- 9.

Google Scholar

[20] Skácelová, D.; Fialová, M.; Sťahel, P.; Černák, M.: Improvement of surface properties of reinforcing polypropylene fibres by atmospheric pressure plasma treatment. In 30th ICPIG Conference Proceedings. Belfast, UK : Queen's University Belfast, 2011. nestránkováno, -3 s. 30. 8. 2011, Belfast, UK.

Google Scholar

[21] Fialová, M.; Skácelová, D.; Sťahel, P.; Černák, M.: Improvement of wetting properties of polypropylene fibres by atmospheric pressure plasma treatment. In Book of Extended abstracts, PASNPG 2011. Blansko : 2011. s. 25-26. 17. 10. 2011, Blansko.

Google Scholar

[22] Fialová, M.; Skácelová, D.; Sťahel, P.; Černák, M.: Reinforcing polypropylene fibres modified by atmospheric pressure plasma. 2011. ISBN 978-80-87294-23-9.

Google Scholar