Modelling Analysis on Mechanical Damage of Kenaf Reinforced Composite Plates under Oblique Impact Loadings

Article Preview

Abstract:

This research focuses on the study of oblique impact on kenaf reinforced composite plate. This study summarizes modeling analysis of targets subjected to certain angle of collisions which ranging from 0o-45o. Due to the low density, natural fiber such as kenaf fiber provides relatively good mechanical properties than glass fiber. Thus, natural fibers have high potential for better reinforcement in light weight structures such as aircraft, automobile. In this research, the velocity impact analysis is conducted by using the commercial finite element analysis software, ANSYS. A few finite element models of the nonwoven composite panel and a rigid impactor is developed using ANSYS software. Experimental investigations in determining mechanical properties and validating purposes are conducted in earlier study by using Universal Testing Machine and High Speed Impact Puncher. Total force, total energy, deformation, and energy absorption of kenaf reinforced composite for oblique impact are analyzed and discussed. The rise of oblique angle will increase the energy absorption of the composite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1324-1328

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Nishino, K. Hirao, and M. Kotera, Kenaf reinforced biodegradable composite, vol. 63, p.1281–1286, (2003).

DOI: 10.1016/s0266-3538(03)00099-x

Google Scholar

[2] M. Zampaloni, F. Pourboghrat, S. a. Yankovich, B. N. Rodgers, J. Moore, L. T. Drzal, a. K. Mohanty, and M. Misra, Kenaf natural fiber reinforced polypropylene composites: A discussion on manufacturing problems and solutions, Composites Part A: Applied Science and Manufacturing, vol. 38, no. 6, p.1569–1580, Jun. (2007).

DOI: 10.1016/j.compositesa.2007.01.001

Google Scholar

[3] D. W. Zhou and W. J. Ã. Stronge, Ballistic limit for oblique impact of thin sandwich panels and spaced plates, vol. 35, p.1339–1354, (2008).

DOI: 10.1016/j.ijimpeng.2007.08.004

Google Scholar

[4] P. Wambua, B. Vangrimde, S. Lomov, and I. Verpoest, The response of natural fibre composites to ballistic impact by fragment simulating projectiles, vol. 77, p.232–240, (2007).

DOI: 10.1016/j.compstruct.2005.07.006

Google Scholar

[5] H. N. Dhakal, Z. Y. Zhang, M. O. W. Richardson, and O. A. Z. Errajhi, The low velocity impact response of non-woven hemp fibre reinforced unsaturated polyester composites, vol. 81, p.559–567, (2007).

DOI: 10.1016/j.compstruct.2006.10.003

Google Scholar

[6] Y. Duan, a. Saigal, R. Greif, and M. a. Zimmerman, Impact behavior and modeling of engineering polymers, Polymer Engineering & Science, vol. 43, no. 1, p.112–124, Jan. (2003).

DOI: 10.1002/pen.10010

Google Scholar

[7] H. M. Akil, M. F. Omar, A. A. M. Mazuki, S. Safiee, Z. A. M. Ishak, and A. A. Bakar, Kenaf fiber reinforced composites_: A review, Materials and Design, vol. 32, no. 8–9, p.4107–4121, (2011).

DOI: 10.1016/j.matdes.2011.04.008

Google Scholar

[8] S. Shibata, Y. Cao, and I. Fukumoto, Press forming of short natural fiber reinforced biodegradable resin_: Effects of fiber volume and length on flexural properties, vol. 24, p.1005–1011, (2005).

DOI: 10.1016/j.polymertesting.2005.07.012

Google Scholar

[9] A. Portilla Bullido, Numerical analysis of impact behaviour on aeronautical composite protections, (2011).

Google Scholar

[10] D. Liu, B. B. Raju, and X. Dang, Impact perforation resistance of laminated and assembled composite plates, vol. 24, p.733–746, (2000).

DOI: 10.1016/s0734-743x(00)00021-x

Google Scholar